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Controlled mechanical ventilation is characterized by a fixed breathing frequency and tidal volume.
Physiological and mathematical models have demonstrated the beneficial effects of varying tidal
volume and/or inspiratory pressure during positive-pressure ventilation. The addition of noise
(random changes) to a monotonous nonlinear biological system, such as the lung, induces stochastic
resonance that contributes to the recruitment of collapsed alveoli and atelectatic lung segments. In
this article, we review the mechanism of physiological pulmonary variability, the principles of noise
and stochastic resonance, and the emerging understanding that there are beneficial effects of
variability during mechanical ventilation. Key words: variability; noise; stochastic resonance; ARDS;
recruitment. [Respir Care 2015;60(8):1203-1210. © 2015 Daedalus Enterprises]

Introduction

Controlled mechanical ventilation is often used for the
management of patients with respiratory failure and tran-
siently during the intraoperative period. Mechanical ven-
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tilation employed during these periods is characterized by
a fixed breathing frequency and monotonous tidal volume
(V) created by a change in airway pressure with either
volume or pressure control mode. This is in sharp contrast
to spontaneous breathing, which demonstrates small breath-
to-breath variations in both V. and breathing frequency
with interspersed, intermittent, deep-inflation breaths (sighs
or augmented breaths). In 1964, Bendixen et al' noted the
significant short-term and long-term variability in ventila-
tory patterns in healthy adults.

Although it remains the mainstay of therapy for ARDS
and other forms of lung injury, there is mounting evidence
of surrogate injury associated with mechanical ventila-
tion.>3 Traditionally, ventilator-induced lung injury is mit-
igated by reducing V. and by the appropriate use of PEEP.23
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Fig. 1. A: Ventilatory pattern determined by input from the cortex,
pons, pulmonary mechanoreceptors, and central and peripheral
chemoreceptors. B: Breath-to-breath variation in tidal volume over
time. * Intermittent deep-inflation breaths or sighs.

However there is increasing preclinical evidence that mim-
icking the physiological variability during controlled and
patient-triggered mechanical ventilation is a novel method
to facilitate lung recruitment and reduce the risk of venti-
lator-induced lung injury.*7 In this review article,
we discuss normal physiological respiratory variability
and the salutary effects on alveolar recruitment, ventila-
tion/perfusion matching, and systemic oxygenation that
occur when variability is applied to a variety of lung injury
models.

Physiological Respiratory Variability

The characteristic pattern of spontaneous breathing is
the result of integration of input from the higher central
nervous system, brainstem control centers, chemorecep-
tion, and pulmonary mechanoreceptors (Fig. 1).8 The
breathing pattern is adapted to meet the immediate meta-
bolic demands while reducing the work of breathing by
optimizing ventilation and perfusion.

The pattern of spontaneous breathing represents a com-
plex interaction of structured time-dependent breath-to-
breath changes coupled with random variations. These fluc-
tuations are due to an inherent homeostatic mechanism
and feedback loops that buffer changes to the respiratory
system and attempt to return them to their dynamic steady
state. This results in a highly variable, unpredictable breath-
ing pattern.

Central and Peripheral Respiratory Control

The 4 major sites for respiratory control are the central
respiratory control center, pulmonary mechanoreceptors,
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and central and peripheral chemoreceptors located in the
brain and aorta, respectively. The central respiratory con-
trol center is located in the medulla and is functionally
responsible for setting the rhythmic respiratory pattern
through the ventilatory pattern generator. Modulation of
the rate and amplitude of the respiratory pattern is accom-
plished via the integrator.® The integrator receives multi-
ple inputs from higher centers, including the hypothala-
mus, amygdala, cerebral cortex, and limbic system, and
from the central and peripheral chemoreceptors (see Fig.
1). The central chemoreceptors are a group of specialized
cells found on the ventrolateral surface of the medulla and
respond to changes in the pH of the cerebrospinal fluid.®

In contrast, the peripheral aortic and carotid chemore-
ceptors respond to changes in Pq, , P , and pH. The final
respiratory control mechanism is through the pulmonary
mechanoreceptors. These include the rapidly adapting pul-
monary stretch receptors, slowly adapting pulmonary
stretch receptors, and juxta-alveolar receptors. The rapidly
adapting pulmonary stretch receptors are located in the
tracheobronchial superficial mucosal layer and result in an
increase in airway resistance, reflex apnea, and coughing.®
The slowly adapting pulmonary stretch receptors are found
in the tracheobronchial smooth muscle layer, are activated
by lung inflation via the vagal afferent myelinated fibers,
and result in termination of the inspiratory process. The
juxta-alveolar receptors lie close to the pulmonary micro-
circulation and respond to mechanical and chemical irri-
tation in the pulmonary interstitium. They are responsible
for the subjective sensation of dyspnea and the respiratory
pattern characterized by rapid shallow breathing.

Biological Systems and Noise
Stochastic Resonance

Many biological systems are characterized by a contin-
uously variable response to changing intrinsic or extrinsic
input (eg, sinus arrhythmia occurs in responses to changes
in ventilation). Analysis of these biological responses dem-
onstrates irregular random fluctuations of the output sig-
nal, characteristic of noise.®

In biological systems, noise traditionally refers to vari-
able output with similar experimental designs or the in-
ability to distinguish biological signals from background
fluctuation.!® These are undesirable side effects of noise.
However, when good noise (where both frequency and
amplitude can be controlled) is added to a previously mo-
notonous biological system, signal output can be improved.
This paradoxical effect of noise is termed stochastic res-
onance.

Stochastic resonance was first described by Roberto
Benzi while studying noise-enhancing signal processing.'?
The primary feature of a nonlinear system with stochastic

RESPIRATORY CARE ® AucusT 2015 VoL 60 No 8



VARIABILITY IN MECHANICAL VENTILATION

Volume

Variable Tidal Volume &

A Variable Inspiratory Pressure

Pressure

A
1
|
1
|
!
|
1
1
1
|
1
1
1
1
1
1
|
|
L
1
1
1
1
1
1

Fig. 2. Pressure-volume curve with either variable tidal volume (V;)
or variable inspiratory pressure normally distributed around point
C, which represents an ideal low V;. Progressive recruitment of
alveoli by stochastic resonance is shown. Point A = lower inflec-
tion point; point B = upper inflection point.

resonance is an increased quality or metric of the output
signal with the addition of noise.!' The improved output
quality is greatest at a single maximum non-zero point
termed the stochastic resonance peak, equivalent to the
resonance frequency of a mechanical system. The phe-
nomenon of stochastic resonance has been quantified and
reported in varied biological and nonbiological systems,
such as climate and financial models.!°

The static pressure-volume curve of the lung has classic
nonlinear features with a steep pressure-volume relation-
ship above the lower inflection point, which flattens above
the upper inflection point (Fig. 2). Stochastic resonance
can be observed theoretically by randomly varying the
inspiratory pressure or V in a gaussian distribution above
the lower inflection point. The theoretical benefits are due
to the marked nonlinearity above this critical point. The
lung volume gained with the higher inspiratory pressures
or Vi will be significantly greater than the lung volume
lost at the lower inspiratory pressures or V.*> Additional
potential benefits of stochastic resonance are suggested by
the work of Suki et al,!! who demonstrated that once the
critical opening pressure of a collapsed alveolus is super-
seded, adjacent alveoli with lower critical opening pres-
sures will open in a series of avalanches. This is equivalent
to the stochastic resonance peak of the pulmonary pres-
sure-volume relationship and can potentially play an im-
portant role in the V recruitment of collapsed lung units.
The phenomenon of stochastic resonance can be observed
by varying either inspiratory pressures or V.. When vary-
ing the Vo, the overall effect is a reduction in mean airway
pressure for the same exhaled minute volume.*
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Limitations of Stochastic Resonance

Although addition of variability to previously monoto-
nous biological systems can be beneficial, extremes of
variability during mechanical ventilation may be detrimen-
tal. The one negative study of variable ventilation in a
canine model of acute lung injury used a highly variable
signal at or above the point on the pressure-volume curve
where noise-related benefit can be derived.* The addition
of noise at or above the upper inflection point (where the
pressure-volume curve flattens out) could have potentially
deleterious effects due to increased mechanical strain on
some alveoli with minimum gain in the V.

Under these circumstances, the risk of alveolar over-
distention supersedes the beneficial effect of alveolar re-
cruitment, resulting in volume-related, ventilator-induced
lung injury. Therefore, the type of noise signal imple-
mented in conjunction with the underlying pulmonary phys-
iological state can potentially have a significant impact on
outcomes.

Intermittent Deep Inflation: Sigh Breath

An intermittent deep-inflation breath provides an addi-
tional normal mechanism of creating respiratory variabil-
ity. The physiological sigh or deep-inflation breath is char-
acterized by a large V breath (2-3 X V) occurring at
varying frequency (1-25 breaths/h) during spontaneous
breathing.!-'> The sigh breath is triggered by the rapidly
adapting pulmonary stretch receptors employing an inspi-
ration-augmenting reflex from the vagal afferents.!3-!5 Cen-
tral pacemaker control for the augmented breath appears to
be integrated but autonomous to the control mechanism
for eupnea.'® The augmented breath serves multiple phys-
iological functions, including reaeration of collapsed alve-
oli, improved functional residual capacity, and reduction
of the pulmonary shunt.! The sigh breath also plays a vital
role in resetting the breathing pattern. Vlemincx et al'?
demonstrated that when breathing becomes either exces-
sively random or lacks significant variability, the sigh breath
is able to restore the deterministic nonrandom variability.

The frequency and pattern of sigh respirations can be
altered under certain circumstances. Sigh respirations are
eliminated following administration of opiates.!8-' How-
ever, Bell et al'® noted the return of augmented breath
when an animal was exposed to a hypoxic mixture. Vol-
atile and total intravenous anesthesia is not associated with
any significant change in the frequency of sigh breaths.20:2!
However, propofol anesthesia is associated with a reduc-
tion in mean inspiratory flow of the augmented breath and
subsequent timing of the succeeding breath.20

In summary, V. and breathing frequency are constantly
changing in the normal breathing pattern and are likely
physiologically beneficial to normal lungs. The evidence
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for adding variability during controlled and patients-trig-
gerred mechanical ventilation for ARDS and non-ARDS
lung pathology is presented below.

ARDS and Variability in Mechanical Ventilation

ARDS is caused by either a primary injury to the lung
or a remote extrapulmonary injury with associated lung
involvement. With primary ARDS, the injury evolves
mainly from the alveolar epithelial membrane with a cas-
cade of changes, including increased alveolar edema, loss
of surfactant, and subsequent healing with fibrosis.?? In
contrast, extrapulmonary ARDS begins predominately with
the pulmonary endothelium with increased vascular per-
meability. Both forms of ARDS are characterized by in-
creased pulmonary edema and alveolar collapse that is
heterogeneously distributed throughout the lung, with the
dependent segments most affected.?? This results in wors-
ening of the ventilation/perfusion mismatch characterized
by increasing shunt and the development of progressive
hypoxemia. Work of breathing increases dramatically, and
respiratory exhaustion may result in acute mechanical re-
spiratory failure.

Controlled mechanical ventilation remains the corner-
stone of management of patients with ARDS. However, a
careful ventilator management strategy is required to pre-
vent ventilator-induced lung injury. Ventilator-induced
lung injury may occur with inappropriately high alveolar
distending pressure or volume, with inappropriate PEEP,
or when a high ventilatory Vi is delivered (> 8 mL/kg).?

Keeping the V to = 6 mL/kg as part of a strategy to
prevent ventilator-induced lung injury has been shown to
reduce mortality and ICU stay in both subjects with and
without ARDS.223.24 However, applying a low-V strat-
egy without appropriate use of PEEP can result in alveoli
collapse. In 15 subjects with ARDS, Richard et al*>> demon-
strated that low V; (6 mL/kg) with PEEP set at the lower
inflection point was associated with significant alveolar de-
recruitment, which improved with application of a recruit-
ment maneuver. More importantly, Levin et al?® demonstrated
an increased risk of 30-d mortality with low intraoperative
V. and minimum PEEP in subjects without ARDS.

Controlled Variable Ventilation and ARDS

Variable ventilation was first described by Lefevre et al®
in a porcine model of oleic acid-induced acute lung injury.
Oleic acid was infused in 17 animals until the systemic
P,o, was < 125 mm Hg with an Fi of 0.5. Animals were
then randomly assigned to receive either conventional ven-
tilation at a rate of 20 breaths/min or variable ventilation.
The baseline pre-oleic acid-induced injury Vi in the
conventional ventilation group was 427 = 64 mL versus
424 = 46 mL in the variable ventilation group. The variable
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ventilation group had a breathing frequency of
20 = 2.3 breaths/min (range of 15-27 breaths/min), with
369 different breathing frequencies and reciprocal changes
in the V. over a 1,089-s period. The V. varied from 75 to
135% of the mean Vi in this computer-controlled model
of variable ventilation. After 4 h of mechanical ventilation,
the variable ventilation group demonstrated a significant
improvement in arterial oxygenation (140 = 44 mm Hg vs
75 = 20 mm Hg, P < .05) with a concomitant lower shunt
fraction (Qg/Qr, 8.5 = 3% vs 13.1 = 3%, P < .05). The
variable ventilation group also demonstrated a statistically
significant higher respiratory compliance (0.62 = 0.18
mL/cm H,0/kg vs 0.49 = 0.16 mL/cm H,O/kg, P < .05)
with lower postmortem wet/dry lung weight (8.1 = 0.9 vs
9.3 = 0.6, P = .01). This beneficial effect of reduced
Q4/Qr and improved oxygenation with variable ventila-
tion has been demonstrated with and without the use of
PEEP.67

The improvement in respiratory compliance and sys-
temic oxygenation and the reduced Qg/Q; are related to
several salutary effects of variable ventilation on pulmo-
nary alveolar mechanics. Arold et al?” demonstrated a nearly
2-fold increase in bronchoalveolar lavage phospholipid sur-
factant levels (160 *= 28 mg/kg vs 84 * 29 mg/kg, P <
.05) with reduced alveolar protein content (17.2 * 3.9
mg/kg vs 12.0 = 1.6 mg/kg, P < .05) with variable ven-
tilation compared with conventional mechanical ventila-
tion. Furthermore, variable ventilation also facilitates more
uniform lung recruitment during acute lung injury. Using
computed tomography in a porcine oleic acid-induced lung
injury model, Graham et al?%-2° demonstrated significantly
improved recruitment of nonaerated and poorly aerated
lung areas without a concomitant increase in hyperaerated
lung areas. In addition, there is evidence that the recruit-
ment associated with variable ventilation is more sustained
than that with monotonous controlled mechanical ventila-
tion when used in conjunction with PEEP.3° In an excised
saline lavage bovine lung injury model, Bellardine et al3°
demonstrated longer recruitment times with a combination
of high V. and variable ventilation compared with high V.
and conventional ventilation. These findings suggest that
variable ventilation is able to provide continuous physio-
logical recruitment without the associated risk of ventila-
tor-induced lung injury.

There are limited studies of variable ventilation in hu-
man subjects. Boker et al3' conducted a prospective study
with 40 subjects undergoing elective open abdominal aor-
tic aneurysmectomy procedures. This procedure is associ-
ated with significant intraoperative atelectasis. Twenty sub-
jects each were randomized to either conventional
ventilation (Vy of 10 mL/kg, breathing frequency of
10 breaths/min, zero PEEP) or variable ventilation (mean
Vi of 10 mL/kg, minimum Vi of 6.4 mL/kg, maximum
Vi of 14.6 mL/kg). The variable ventilation group dem-
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onstrated higher arterial oxygenation and pulmonary com-
pliance with lower P, and dead-space ventilation. The
major limitation of this study was the absence of PEEP in
the conventional ventilation group. In contrast, Kowalski
et al32 performed a crossover trial in 8 subjects with ARDS
undergoing protective lung ventilation. They reported a
better oxygenation index (Fio X mean airway pressure X
[100/P,g ], variable ventilation: 7.1 cm H,O/mm Hg vs
conventional ventilation: 11.5 cm H,O/mm Hg, P = .034)
and higher lung compliance (variable ventilation: 0.36
mL/cm H,O/kg vs conventional ventilation: 0.34
mL/cm H,O/kg, P = .049) when variable ventilation was
instituted. Although the number of human studies on vari-
able ventilation is limited, the aforementioned studies are
congruent with the positive findings previously reported in
animal models.

Patient-triggered Variable Ventilation and ARDS

The beneficial effects of noise are also seen with spon-
taneous ventilation modes. Conventional pressure support
ventilation (PSV) is a spontaneous mode of ventilation
that is either flow- or pressure-triggered, pressure-limited,
and either flow- or time-cycled. Because PSV is pressure-
limited, the V. can remain relatively constant if respira-
tory compliance does not change rapidly (min to h). Vary-
ing the inspiratory pressure randomly in a normal
distribution will result in stochastic resonance as described
previously. Noisy PSV was first described by Gama de
Abreu et al? in a porcine surfactant depletion model. They
reported that noisy PSV decreased venous admixture com-
pared with PSV alone (11.1% [5.5-20.3] versus 16.5%
[7.9-29.8], P < .05). Using florescent, color-labeled mi-
crospheres, they also demonstrated that noisy PSV im-
proved pulmonary blood flow to the nondependent areas
of the lung, thus reducing the Qg/Qy. With noisy PSV, the
amount of variability can influence both recruitment and
patient-ventilator synchrony and comfort. Normally dis-
tributed inspiratory pressures with mean = SD of 1 =
0.075, 1 = 0.15, 1 £ 0.30, and 1 = 0.45 of the baseline
mean pressure support required to maintain a Vi of 6
mL/kg were studied by Spieth et al** in a porcine surfac-
tant depletion model. They found that a variability of 30%
(mean * SD of 1 * 0.30) was associated with the highest
P.0,/Fio, with the lowest Qs/Qr.

Sigh Breaths and ARDS

As noted above, sigh breaths are normal physiological
respiratory events that are thought to assist with re-recruit-
ment of atelectatic lung units and to reset the breathing
pattern when it becomes either excessively chaotic or mo-
notonous.!” The sigh breath can be considered a limited
form of noisy respiration. The first description of the sigh
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breath was reported in 1919 by Haldane et al®® in their
study of shallow-breathing patterns in healthy adults. Sub-
sequently, Laver et al3® demonstrated an improvement in
pulmonary compliance in subjects undergoing general an-
esthesia when an intermittent deep-inflation breath was
applied. In this early study of deep-inflation breaths, PEEP
was not utilized, which may explain the marked improve-
ment in pulmonary compliance with an intermittent aug-
mented breath.3” Based on these earlier studies, sigh breaths
were incorporated into mechanical ventilators. However,
with the development and popularization of PEEP, the
sigh breath has been relegated to antiquity.’®

More recent studies of sigh respiration in ARDS have
demonstrated consistent improvement in pulmonary pa-
rameters of gas exchange during both supine and prone
ventilation.3*-*? In these studies, protective lung strategies
(low V. and PEEP) were utilized and subjects underwent
controlled mechanical ventilation. The benefit of a sigh
breath in these studies is likely related to the re-recruit-
ment of atelectatic lung units when a low-V strategy is
used, and the PEEP values are insufficient to prevent at-
electasis.

The beneficial effects of sigh-augmented ventilation are
also evident with patient-triggered modes of ventilation.
Patroniti et al*> demonstrated an improvement in arterial
oxygenation (PSV: 91.4 = 27.4 mm Hg vs PSV + sigh:
133 *= 42.5 mm Hg, P < .001), end-expiratory lung vol-
ume (PSV: 1,242 = 507 mL vs PSV + sigh: 1,377 = 484
mL, P < .01), and pulmonary compliance (PSV: 40.2 =
12.5 mL/cm H,0 vs PSV + sigh: 45.1 = 15.3 mL/cm H,O,
P < .01) when a sigh breath (1 breath/min) was applied to
PSV in subjects with ARDS. There appear to be fewer and
more variable benefits of an augmented breath in pulmo-
nary and extrapulmonary ARDS. In 5 subjects with pul-
monary ARDS and 5 subjects with extrapulmonary ARDS,
Pelosi et al*! demonstrated significantly lower end-expi-
ratory lung volumes after introduction of a sigh in subjects
with pulmonary ARDS (0.16 = 0.13 L vs 0.69 = 0.34 L,
respectively, P < .01).

There is limited evidence on the frequency or the vol-
ume/pressure of the sigh breath that optimizes recruitment
with ARDS. However, an inappropriately high frequency
of sighs may be associated with ventilator-induced lung
injury, similar to that seen with high V. (>12 mL/kg). In
a murine model of paraquat-induced acute lung injury,
Steimback et al** demonstrated that a high frequency of
sighs (180 breaths/h vs 10 breaths/h) was associated with
increased lung and kidney cell apoptosis and type III pro-
collagen mRNA expression.

Variable Ventilation in Non-ARDS Models

The beneficial effects of variable ventilation have been
found to extend beyond the acute lung injury model. Mutch
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et al*> reported improved oxygenation, lower P, , higher
dynamic and static compliance, and lower total respiratory
system resistance in a porcine methacholine-induced bron-
chospasm model. The improvement in pulmonary gas ex-
change and airway resistance is related to the positive
effect of noise on both terminal airway opening and alve-
olar recruitment, both of which can be severely compro-
mised with bronchospasm. One-lung ventilation is com-
monly performed in thoracic surgery to optimize the
operative field. Side effects of one-lung ventilation include
a large Q¢/Qy as a result of the controlled lung collapse
and atelectasis of the dependent lung units and the gravi-
tational effects of the lateral position on pulmonary blood
flow. McMullen et al*® reported improved oxygenation
and lower Qg/Qy and P,co, when variable ventilation was
applied to the dependent lung in a porcine one-lung ven-
tilation study. The positive impact on pulmonary compli-
ance was seen 60 min after the initiation of one-lung ven-
tilation and was sustained after return to 2-lung ventilation.

Practical Applications for Variable Ventilation

There are no commercially available ventilators capable
of performing variable ventilation. This does limit the use
of this novel mode of ventilation by the respiratory ther-
apist managing patients requiring controlled mechanical
ventilation. However, the application of intermittent sigh
breaths offers the opportunity to introduce some limited
variability. The sigh breath is set to either 2 or 3 times the
baseline V or to a predefined plateau pressure.*® The sigh
breath frequency should be limited to 2-3 breaths/min to
facilitate maximum recruitment without inducing volume-
related lung injury.**

In the absence of severe ARDS requiring muscle paral-
ysis and controlled mechanical ventilation, rapidly transi-
tioning to patient-triggered or spontaneous modes of ven-
tilation has multiple benefits.*’” Both patient-triggered
ventilation and spontaneous ventilation facilitate better ven-
tilation/perfusion matching, reduce ventilator-induced lung
injury, and preserve diaphragmatic function.*8-50

Furthermore, patient-triggered ventilation modes can po-
tentially yield a highly variable respiratory pattern, akin to
the experimental variable ventilation studies reported pre-
viously. Multiple modes of patient-triggered ventilation
are currently available, and the respiratory therapist should
utilize the most familiar mode. When a patient-triggered
mode of ventilation is instituted, no additional ventilator
settings are required to establish variability, as this will be
patient-driven.

Proportional assist and neurally adjusted ventilatory as-
sist are 2 modes of patient-triggered ventilation. In the
former, the pressure support is proportional to the instan-
taneous flow and volume requirement.*’ In contrast with
the neurally adjusted ventilatory assist mode, the level of
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inspiratory support is related to the electrical inspiratory
activity of the diaphragm.*” Both modes of ventilation
yield a highly variable V| pattern and can initiate the
beneficial effects of noise and stochastic resonance.

Conclusions

The current ventilatory strategy for the management of
ARDS is to improve oxygenation and reduce intrapulmo-
nary shunt by recruitment of previously collapsed alveoli.
In addition, uninjured lung units must be protected from
the deleterious effects of positive-pressure ventilation.
Based on the best evidence to date, this involves ventilat-
ing with low V.. (6 mL/kg of predicted normal body weight)
and limiting plateau pressures to < 30 cm H,O to prevent
barotrauma while optimizing PEEP to reduce cyclical al-
veolar opening- and closing-related atelectrauma. There is
less clear evidence regarding the optimum type of recruit-
ment maneuver to perform when protective lung ventila-
tion is employed.

Recruitment maneuvers include intermittent sustained
inflation breaths, incremental increases in PEEP, prone
positioning, and intermittent large V breaths. The choice
of the recruitment maneuver is influenced by the nature of
the lung injury (primary vs secondary ARDS), extent of
the lung injury, hemodynamic stability, and clinician ex-
perience. However, any recruitment maneuvers associated
with high inspiratory pressures may result in deleterious
cardiorespiratory changes.>!

Variable ventilation offers a new physiological approach
to lung recruitment without the negative hemodynamic
effects from markedly elevated intrathoracic pressures. Al-
though human data for variable ventilation are limited,
animal data with variable ventilation in ARDS and non-
ARDS models are encouraging. Larger prospective human
studies utilizing this novel strategy are needed to confirm
the benefits shown by early animal data.
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