TY - JOUR T1 - Aerosol Delivery Through an Adult High-Flow Nasal Cannula Circuit Using Low-Flow Oxygen JF - Respiratory Care SP - 453 LP - 461 DO - 10.4187/respcare.06345 VL - 64 IS - 4 AU - Yasmin M Madney AU - Maha Fathy AU - Ahmed A Elberry AU - Hoda Rabea AU - Mohamed EA Abdelrahim Y1 - 2019/04/01 UR - http://rc.rcjournal.com/content/64/4/453.abstract N2 - BACKGROUND: There has been a growing trend toward delivering aerosolized medications using high-flow nasal cannula (HFNC). In some cases, patients who do not require high-flow oxygen to maintain adequate oxygenation may benefit from aerosol delivery while receiving low-flow oxygen via HFNC. The objective of this study was to quantify and compare the relative pulmonary and systemic delivery of salbutamol, with 2 different nebulizers, in patients with COPD receiving low-flow oxygen therapy through an HFNC.METHODS: Subjects were randomized to receive study doses of 5 mg salbutamol nebulized by either a jet nebulizer or a vibrating mesh nebulizer with a T-piece or spacer on days 1, 3, and 5 of admission. Subjects using the large spacer also received 2 puffs (100 μg each) of salbutamol via a pressurized metered-dose-inhaler prior to the nebulizer dose. Urinary salbutamol excretion 30 min post-inhalation and pooled samples of urinary salbutamol excretion up to 24 h post-inhalation were measured. On day 2, ex vivo studies were performed with salbutamol collected on filters placed between the HFNC and nebulizer, with drug eluted from filters and analyzed to determine inhaled dose.RESULTS: Twelve subjects (6 females), age 51.3 ± 11.2 y, were included. The vibrating mesh nebulizer demonstrated higher urinary salbutamol excretion at 30 min and 24 h post-inhalation compared to a jet nebulizer (P = .001 and P = .02, respectively). No significant difference was found between the T-piece and large-spacer configurations, even though the spacer provided a significantly larger emitted aerosol dose at the opening of the HFNC (P = .002).CONCLUSIONS: Aerosolized medication could be efficiently combined with low-flow oxygen, via HFNC, in COPD subjects without the need to interrupt the gas supply. The vibrating mesh nebulizer delivered larger doses to subjects compared to the jet nebulizer. However, there was no benefit of using the large spacer with HFNC in low-flow delivery, because the small inner diameter of the HFNC does not allow larger aerosol droplet sizes (preserved by the spacer) to reach the subject. ER -