
Comparison of FiO₂ Delivery With Low Flow vs High Flow Cannulas: A Simulation Study Morgan E. Sorg and Robert L. Chatburn

Background

There are two nasal cannulas on the market. One is advertised as a "low-flow" nasal cannula (LFNC) and the other advertised as a "high flow" nasal cannula (HFNC). Depending on distributors websites, the LFNC is designed for flows 1-6 L/min and the HFNC device is recommended for flows >6 L/min up to 15 L/min. Both devices are designed to directly attach to an oxygen flowmeter or to an unheated bubble humidifier, which is connected to the flowmeter. Both devices allow a clinician control over oxygen source flow, but no direct control of FiO_2 .

Upon clinical observation, it has been noted that clinicians believe there is an inherent difference between a LFNC and a HFNC. If a patient is on a 6L/min LFNC and has in increase in oxygen needs, the clinician will place the patient on a flow > 6 L/min using a HFNC.

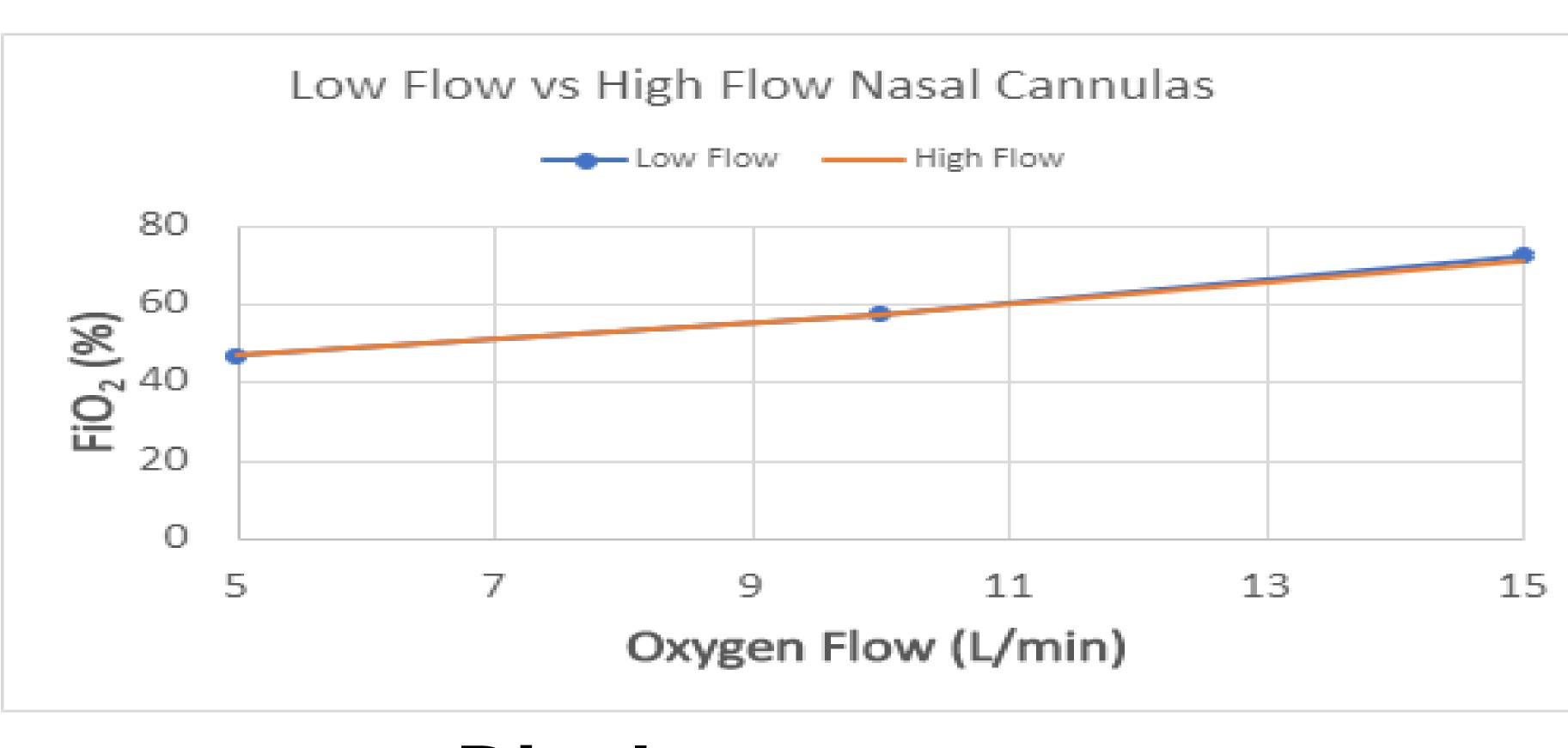
The purpose of this study was to test this assumption by comparing FiO₂ delivery for LFNC and HFNC across a range of flow.

Respiratory Institute, Cleveland Clinic, Cleveland, Ohio

Methods

An adult mannequin head (Michigan Instruments Inc.) was attached to a breathing simulator (IngMar ASL 5000), which is capable of measuring FiO_2 at the simulated alveolar level. Evidence-based values were used to set the simulator to closed-loop volume control mode with VT = 490 mL, C = 50 mL/cm H20, R = 4 cm H2O/L/s, f = 15, increase = 25%, hold= 0%, release = 30%.

A LFNC (Westmed 0556) and HFNC (Westmed 0549) were attached to the nares of the mannequin (mouth opening blocked) and run at 5, 10, and 15 L/min (verified with a Citrix H4 flowmeter). Between trials the simulator continued to run until FiO_2 was below 22%. Each experiment was repeated once.


The FiO₂ measurements were averaged and compared using a two-tailed unpaired t-test with p<0.05 indicating significance.

Results

There was no difference in FiO₂ between LFNC and HFNC at 5 and 10 L/min. There was a significant, but clinically unimportant difference at a flow of 15 L/min.(see Table 1).

Table 1. LFNC vs HFNC Experimental Results. Δ = FiO2 High Flow- FiO2 Low Flow

	FiO ₂ (%)					
Flow	Low Flow		High Flow			
(L/min)	Mean	SD	Mean	SD	Δ	p-value
5	46.60	0.00	46.50	0.14	0.10	0.50
10	57.00	0.57	56.95	0.92	0.05	0.95
15	72.30	0.00	70.65	0.07	1.65	0.02

Conflicts of Interest: Morgan Sorg : none; Robert L. Chatburn: Consultant for IngMar Medical, Inovytec, Temple, Aires, Ventis Medical, and Promedic Consulting.

Conclusions

This study shows that the assumption of needing different types of cannulas depending on flow is false.

This simulation-based study demonstrates that the differences in the dimensions of the LFNC and HFNC have negligible effect on FiO_2 delivery at the same oxygen source flow. Though the FiO_2 measured at 15 L/min is scientifically significant, the small difference in FiO_2 (~1.65%) is not clinically important. These findings suggest that changing the interface from a LFNC to a HFNC on a patient whose oxygen requirements exceed 6 L/min is not necessary.

1. Vargas F, Saint-Leger M, Boyer A, Bui NH, Hilbert G. Physiologic Effects of High-Flow Nasal Cannula Oxygen in Critical Care Subjects. Respir Care. 2015;60(10):1369-1376.

2. Maggiore SM, Idone FA, Vaschetto R, et al. Nasal high-flow versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome. Am J Respir Crit Care Med. 2014;190(3):282-288.

Disclosures

Cleveland Clinic

References