Skip to main content
Log in

Regional and overall ventilation inhomogeneities in preterm and term-born infants

  • Pediatric Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objectives

We compared ventilation inhomogeneity assessed by electrical impedance tomography (EIT) and multiple breath washout (MBW) in preterm and term-born infants. We hypothesised that EIT measurements in spontaneously breathing infants are repeatable and that differences in regional ventilation distribution measured by EIT can distinguish between preterm and term-born infants.

Design

Cross-sectional group comparison study.

Setting

Lung function laboratory at a University Children’s Hospital.

Participants

Seventeen healthy term-born and 15 preterm infants at a matched postmenstrual age of 44 weeks.

Measurements and results

We concurrently measured ventilation inhomogeneity by EIT, ventilation inhomogeneity (LCI) and functional residual capacity (FRC) by MBW and tidal breathing variables during unsedated quiet sleep. EIT measurements were highly repeatable (coefficient of variation 3.6%). Preterm infants showed significantly more ventilation of the independent parts of the lungs compared to healthy term-born infants assessed by EIT (mean difference 5.0, 95 CI 1.3–8%). Whereas the two groups showed no differences in lung volumes or ventilation inhomogeneities assessed by MBW, EIT discriminated better between term and preterm infants. (FRC/kg: mean difference 1.1 mL, 95% CI −1.4–3.8 mL; LCI: mean difference 0.03, 95% CI −0.32–0.25).

Conclusions

EIT shows distinct differences in ventilation distribution between preterm and term-born infants, which cannot be detected by MBW. Although preterm infants are capable of dynamically maintaining overall functional residual volume and ventilation distribution, they show some spatial differences from fullterm infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baraldi E, Filippone M (2007) Chronic lung disease after premature birth. N Engl J Med 357:1946–1955

    Article  PubMed  CAS  Google Scholar 

  2. Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163:1723–1729

    PubMed  CAS  Google Scholar 

  3. Kinsella JP, Greenough A, Abman SH (2006) Bronchopulmonary dysplasia. Lancet 367:1421–1431

    Article  PubMed  Google Scholar 

  4. Gappa M, Pillow JJ, Allen J, Mayer O, Stocks J (2006) Lung function tests in neonates and infants with chronic lung disease: lung and chest-wall mechanics. Pediatr Pulmonol 41:291–317

    Article  PubMed  Google Scholar 

  5. Hulskamp G, Pillow JJ, Dinger J, Stocks J (2006) Lung function tests in neonates and infants with chronic lung disease of infancy: functional residual capacity. Pediatr Pulmonol 41:1–22

    Article  PubMed  Google Scholar 

  6. Pillow JJ, Frerichs I, Stocks J (2006) Lung function tests in neonates and infants with chronic lung disease: global and regional ventilation inhomogeneity. Pediatr Pulmonol 41:105–121

    Article  PubMed  Google Scholar 

  7. Friedrich L, Pitrez PM, Stein RT, Goldani M, Tepper R, Jones MH (2007) Growth rate of lung function in healthy preterm infants. Am J Respir Crit Care Med 176:1269–1273

    Article  PubMed  Google Scholar 

  8. Hjalmarson O, Sandberg K (2002) Abnormal lung function in healthy preterm infants. Am J Respir Crit Care Med 165:83–87

    PubMed  Google Scholar 

  9. Schmalisch G, Wilitzki S, Wauer RR (2005) Differences in tidal breathing between infants with chronic lung diseases and healthy controls. BMC Pediatr 5:36

    Article  PubMed  CAS  Google Scholar 

  10. Ochiai M, Hikino S, Yabuuchi H, Nakayama H, Sato K, Ohga S, Hara T (2008) A new scoring system for computed tomography of the chest for assessing the clinical status of bronchopulmonary dysplasia. J Pediatr 152:90–95, 95 e91–93

    Google Scholar 

  11. Dunlop S, Hough J, Riedel T, Fraser JF, Dunster K, Schibler A (2006) Electrical impedance tomography in extremely prematurely born infants and during high frequency oscillatory ventilation analyzed in the frequency domain. Physiol Meas 27:1151–1165 Epub 2006 Sep 1120

    Article  PubMed  Google Scholar 

  12. Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC (2003) Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 29:2312–2316 Epub 2003 Oct 2318

    Article  PubMed  Google Scholar 

  13. Riedel T, Richards T, Schibler A (2005) The value of electrical impedance tomography in assessing the effect of body position and positive airway pressures on regional lung ventilation in spontaneously breathing subjects. Intensive Care Med 31:1522–1528 Epub 2005 Sep 1530

    Article  PubMed  Google Scholar 

  14. Frerichs I, Schiffmann H, Oehler R, Dudykevych T, Hahn G, Hinz J, Hellige G (2003) Distribution of lung ventilation in spontaneously breathing neonates lying in different body positions. Intensive Care Med 29:787–794 Epub 2003 Mar 2029

    Article  PubMed  Google Scholar 

  15. Hedenstierna G (2004) Using electric impedance tomography to assess regional ventilation at the bedside. Am J Respir Crit Care Med 169:777–778

    Article  PubMed  Google Scholar 

  16. Hjalmarson O, Sandberg KL (2005) Lung function at term reflects severity of bronchopulmonary dysplasia. J Pediatr 146:86–90

    Article  PubMed  Google Scholar 

  17. de Winter JP, Merth IT, Brand R, Quanjer PH (2000) Functional residual capacity and static compliance during the first year in preterm infants treated with surfactant. Am J Perinatol 17:377–384

    Article  PubMed  Google Scholar 

  18. Bates JH, Schmalisch G, Filbrun D, Stocks J (2000) Tidal breath analysis for infant pulmonary function testing. ERS/ATS task force on standards for infant respiratory function testing. European respiratory society/American thoracic society. Eur Respir J 16:1180–1192

    Article  PubMed  CAS  Google Scholar 

  19. Frey U, Stocks J, Coates A, Sly P, Bates J (2000) Specifications for equipment used for infant pulmonary function testing. ERS/ATS task force on standards for infant respiratory function testing. European respiratory society/American thoracic society. Eur Respir J 16:731–740

    Article  PubMed  CAS  Google Scholar 

  20. Friedrich L, Stein RT, Pitrez PM, Corso AL, Jones MH (2006) Reduced lung function in healthy preterm infants in the first months of life. Am J Respir Crit Care Med 173:442–447

    Article  PubMed  Google Scholar 

  21. Hulskamp G, Stocks J, Costeloe K, Hawdon S, Lum S, Hoo AF, Ljungberg H, Pillow JJ (2003) Interpretation of FRC in infants with CLD demands appropriate adjustment for body size. Eur Respir J 22(Suppl 45):382s [abstract]

    Google Scholar 

  22. Latzin P, Roth S, Thamrin C, Roiha HL, Baldwin D, Kuehni CE, Pramana I, Casaulta C, Riedel T, Frey U (2008) Tidal breathing and lung function abnormalities in preterm infants in comparison to term controls. Am J Respir Crit Care Med 177:A55

    Google Scholar 

  23. Latzin P, Kuehni CE, Baldwin DN, Roiha HL, Casaulta C, Frey U (2006) Elevated exhaled nitric oxide in newborns of atopic mothers precedes respiratory symptoms. Am J Respir Crit Care Med 174:1292–1298

    Article  PubMed  CAS  Google Scholar 

  24. Barber DC, Brown DH (1984) Applied potential tomography. J Phys E Sci Instrum 17:723–733

    Article  Google Scholar 

  25. Latzin P, Sauteur L, Thamrin C, Schibler A, Baldwin D, Hutten GJ, Kyburz M, Kraemer R, Riedel T, Frey U (2007) Optimized temperature and deadspace correction improve analysis of multiple breath washout measurements by ultrasonic flowmeter in infants. Pediatr Pulmonol 42:888–897

    Article  PubMed  CAS  Google Scholar 

  26. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  27. Wolf GK, Grychtol B, Frerichs I, van Genderingen HR, Zurakowski D, Thompson JE, Arnold JH (2007) Regional lung volume changes in children with acute respiratory distress syndrome during a derecruitment maneuver. Crit Care Med 35:1972–1978

    Article  PubMed  Google Scholar 

  28. Hinz J, Gehoff A, Moerer O, Frerichs I, Hahn G, Hellige G, Quintel M (2007) Regional filling characteristics of the lungs in mechanically ventilated patients with acute lung injury. Eur J Anaesthesiol 24:414–424

    Article  PubMed  CAS  Google Scholar 

  29. van Genderingen HR, van Vught AJ, Jansen JR (2004) Regional lung volume during high-frequency oscillatory ventilation by electrical impedance tomography. Crit Care Med 32:787–794

    Article  PubMed  Google Scholar 

  30. Meier T, Luepschen H, Karsten J, Leibecke T, Grossherr M, Gehring H, Leonhardt S (2008) Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med 34:543–550

    Article  PubMed  Google Scholar 

  31. Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, Quintel M, Hellige G (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666

    PubMed  Google Scholar 

  32. Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800

    Article  PubMed  Google Scholar 

  33. Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, Hedenstierna G (2003) Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 124:314–322

    Article  PubMed  Google Scholar 

  34. Heinrich S, Schiffmann H, Frerichs A, Klockgether-Radke A, Frerichs I (2006) Body and head position effects on regional lung ventilation in infants: An electrical impedance tomography study. Intensive Care Med 32:1392–1398 Epub 2006 Jun 1324

    Article  PubMed  Google Scholar 

  35. Frerichs I, Schmitz G, Pulletz S, Schadler D, Zick G, Scholz J, Weiler N (2007) Reproducibility of regional lung ventilation distribution determined by electrical impedance tomography during mechanical ventilation. Physiol Meas 28:S261–S267

    Article  PubMed  CAS  Google Scholar 

  36. Katz-Salamon M, Jonsson B, Lagercrantz H (1995) Blunted peripheral chemoreceptor response to hyperoxia in a group of infants with bronchopulmonary dysplasia. Pediatr Pulmonol 20:101–106

    Article  PubMed  CAS  Google Scholar 

  37. Williams BA, Smyth J, Boon AW, Hanson MA, Kumar P, Blanco CE (1991) Development of respiratory chemoreflexes in response to alternations of fractional inspired oxygen in the newborn infant. J Physiol 442:81–90

    PubMed  CAS  Google Scholar 

  38. Crawford AB, Makowska M, Engel LA (1986) Effect of tidal volume on ventilation maldistribution. Respir Physiol 66:11–25

    Article  PubMed  CAS  Google Scholar 

  39. Milic-Emili J, Henderson JA, Dolovich MB, Trop D, Kaneko K (1966) Regional distribution of inspired gas in the lung. J Appl Physiol 21:749–759

    PubMed  CAS  Google Scholar 

  40. Helms P, Beardsmore CS, Stocks J (1981) Absolute intraesophageal pressure at functional residual capacity in frequency. J Appl Physiol 51:270–275

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported, in parts, by the Swiss National Foundation grant 3200-B0-112099 to P.L. and U.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Riedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, T., Kyburz, M., Latzin, P. et al. Regional and overall ventilation inhomogeneities in preterm and term-born infants. Intensive Care Med 35, 144–151 (2009). https://doi.org/10.1007/s00134-008-1299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-008-1299-x

Keywords

Navigation