Skip to main content
Log in

Exercise Capacity and Ventilatory Response During Exercise in COPD Patients With and Without β Blockade

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Although β blockade (BB) in patients with chronic obstructive pulmonary disease (COPD) does not show signs of worsening pulmonary function or respiratory symptoms, the effects on cardiopulmonary exercise testing (CPET) remain unclear. The aim of this study was to determine whether BB affects exercise capacity, gas exchange, and hemodynamic responses in patients with COPD.

Methods

Twenty-four COPD subjects on BB were matched to 24 COPD subjects without BB according to age, gender, body mass index, and severity of COPD. All subjects underwent resting pulmonary function and symptom-limited CPET.

Results

Comparing COPD patients with and without BB revealed that percent peak oxygen consumption and VE/VCO2 nadir were not significantly different (45 ± 16 vs. 51 ± 23 %, p = 0.30, and 35.1 ± 8.5 vs. 36.2 ± 11.6 %, p = 0.69). Systolic blood pressure and heart rate at peak exercise were significantly decreased in COPD patients with BB (168 ± 16 vs. 185 ± 20 mmHg, and 109 ± 16 vs. 122 ± 14 bpm, respectively, p < 0.05).

Conclusion

Exercise capacity and gas exchange remain unaffected in patients with COPD in the presence of BB, although heart rate and blood pressure are lower. These findings imply that BB does not adversely affect functional capacity in patients with COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ross RM (2003) ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 167:1451

    Article  PubMed  Google Scholar 

  2. Kennedy HL, Rosenson RS (1995) Physician use of beta-adrenergic blocking therapy: a changing perspective. J Am Coll Cardiol 26:547–552

    Article  PubMed  CAS  Google Scholar 

  3. Viskin S, Barron HV (1996) Beta blockers prevent cardiac death following a myocardial infarction: so why are so many infarct survivors discharged without beta blockers? Am J Cardiol 78:821–822

    Article  PubMed  CAS  Google Scholar 

  4. Gottlieb SS, McCarter RJ, Vogel RA (1998) Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction. New Engl J Med 339:489–497

    Article  PubMed  CAS  Google Scholar 

  5. Salpeter SR, Ormiston TM, Salpeter EE et al (2003) Cardioselective beta-blockers for chronic obstructive pulmonary disease: a meta-analysis. Respir Med 97:1094–1101

    Article  PubMed  CAS  Google Scholar 

  6. Andrus MR, Holloway KP, Clark DB (2004) Use of β-blockers in patients with COPD. Ann Pharmacother 38:142–145

    Article  PubMed  CAS  Google Scholar 

  7. Salpeter SR, Ormiston TM, Salpeter EE (2002) Cardioselective beta-blocker use in patients with COPD (Cochrane Review). The Cochrane Library (update software), Oxford

    Google Scholar 

  8. Formgren H (1976) The effect of metoprolol and practolol on lung function and blood pressure in hypertensive asthmatics. Br J Clin Pharmacol 3:1007–1014

    Article  PubMed  CAS  Google Scholar 

  9. Quan S, Fenster P, Hanson C et al (1983) Suppression of atrial ectopy with intravenous metoprolol in chronic obstructive pulmonary disease patients. J Clin Pharmacol 123:341–347

    Article  Google Scholar 

  10. Dorow P, Clauzel AM, Capone P et al (1986) A comparison of celiprolol and chlorthalidone in hypertensive patients with reversible bronchial obstruction. J Cardiovasc Pharmacol 8:S102–S104

    Article  PubMed  Google Scholar 

  11. Ades PA, Brammell HL, Greenberg JH et al (1984) Effect of beta blockade and intrinsic sympathomimetic activity on exercise performance. Am J Cardiol 54:1337–1341

    Article  PubMed  CAS  Google Scholar 

  12. Marsh RC, Hiatt WR, Brammell HL et al (1983) Attenuation of exercise conditioning by low dose beta-adrenergic receptor blockade. J Am Coll Cardiol 2:551–556

    Article  PubMed  CAS  Google Scholar 

  13. Wolfel EE, Hiatt WR, Brammell HL et al (1986) Effects of selective and nonselective beta-adrenergic blockade on mechanisms of exercise conditioning. Circulation 74:664–674

    Article  PubMed  CAS  Google Scholar 

  14. Gläser S, Koch B, Ittermann T et al (2010) Influence of age, sex, body size, smoking, and β blockade on key gas exchange exercise parameters in an adult population. Eur J Cardiovasc Prev Rehabil 17:469–476

    Article  PubMed  Google Scholar 

  15. Ades PA, Gunther PG, Meacham CP et al (1988) Hypertension, exercise, and beta-adrenergic blockade. Ann Intern Med 109:629–634

    Article  PubMed  CAS  Google Scholar 

  16. Maurer M, Katz SD, LaManca J et al (2003) Dissociation between exercise hemodynamics and exercise capacity in patients with chronic heart failure and marked increase in ejection fraction after treatment with beta-adrenergic receptor antagonists. Am J Cardiol 91:356–360

    Article  PubMed  CAS  Google Scholar 

  17. Witte KK, Thackray S, Nikitin NP et al (2005) The effects of long-term β-blockade on the ventilatory responses to exercise in chronic heart failure. Eur J Heart Fail 7:612–617

    Article  PubMed  CAS  Google Scholar 

  18. Wolfel E (2006) Exercise testing with concurrent beta-blocker usage: is it useful? What do we learn? Curr Heart Fail Rep 3:81–88

    Article  PubMed  Google Scholar 

  19. Wolk R, Johnson BD, Somers VK et al (2005) Effects of beta-blocker therapy on ventilatory responses to exercise in patients with heart failure. J Cardiac Fail 11:333–339

    Article  CAS  Google Scholar 

  20. Celli BR, MacNee W, Agusti A et al (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23:932–946

    Article  PubMed  CAS  Google Scholar 

  21. Crapo R, Morris A, Gardner R (1981) Reference spirometric values using techniques and equipment that meet ATS recommendations. Am Rev Respir Dis 123:659–664

    PubMed  CAS  Google Scholar 

  22. Crapo RO, Morris AH (1981) Standardized single breath normal values for carbon monoxide diffusing capacity. Am Rev Respir Dis 123:185–189

    PubMed  CAS  Google Scholar 

  23. Crapo RO, Morris AH, Clayton PD et al (1982) Lung volumes in healthy nonsmoking adults. Bull Eur Physiopathol Respir 18:419–425

    PubMed  CAS  Google Scholar 

  24. Naunheim KS, Wood DE, Mohsenifar Z et al (2006) Long-term follow-up of patients receiving lung-volume-reduction surgery versus medical therapy for severe emphysema by the National Emphysema Treatment Trial Research Group. Ann Thorac Surg 82:431–443

    Article  PubMed  Google Scholar 

  25. Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37:153–156

    Article  PubMed  CAS  Google Scholar 

  26. Spruit MA, Mercken EM, Wouters E (2007) Role of exercise testing in defining the response to interventions in chronic obstructive pulmonary disease patients. In: Ward SA, Palange P (eds) Latimer Trend & Co. Ltd, Plymouth, pp 208–220

  27. Jones N, Makrides L, Hitchcock C et al (1985) Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis 131(5):700–708

    PubMed  CAS  Google Scholar 

  28. Ferrazza AM, Martolini D, Valli G et al (2009) Cardiopulmonary exercise testing in the functional and prognostic evaluation of patients with pulmonary diseases. Respiration 77:3–17

    Article  PubMed  CAS  Google Scholar 

  29. Bartels MN, Gonzalez JA, Kim W, DeMeersman RA (2000) Oxygen supplementation and cardiac-autonomic modulation in chronic obstructive pulmonary disease. Chest 118:691–696

    Article  PubMed  CAS  Google Scholar 

  30. Bartels MN, Jelic S, Basner RC, Ngai P, DeMeersman R (2003) High frequency modulation of heart rate variability during exercise in patients with chronic obstructive pulmonary disease. Chest 124:863–869

    Article  PubMed  Google Scholar 

  31. Bartels MN, Jelic S, Basner RC, Ngai P, Gonzalez JM, De Meersman RE (2004) Supplemental oxygen increases arterial stiffness in chronic obstructive pulmonary disease. Respir Med 98:84–89

    Article  PubMed  Google Scholar 

  32. Bartels MN, Gates GJ, Downey JA, Armstrong HF, De Meersman RE (2012) Baroreceptor sensitivity after Valsalva maneuver in women with chronic obstructive pulmonary disease. Clin Auton Res 22(4):185–189

    Article  PubMed  Google Scholar 

  33. Packer M, Colucci WS, Sackner-Bernstein JD et al (1996) Double-blind, placebo-controlled study of the effects of carvedilol in patients with moderate to severe heart failure. Circulation 94:2793–2799

    Article  PubMed  CAS  Google Scholar 

  34. Colucci WS, Packer M, Bristow MR et al (1996) Carvedilol inhibits clinical progression in patients with mild symptoms of heart failure. Circulation 94:2800–2806

    Article  PubMed  CAS  Google Scholar 

  35. Cohn JN, Fowler MB, Bristow MR et al (1997) Safety and efficacy of carvedilol in severe heart failure. J Cardiac Fail 3:173–179

    Article  CAS  Google Scholar 

  36. Buendía Fuentes F, Almenar Bonet L, Martínez-Dolz L et al (2009) Exercise tolerance after beta blockade in recent cardiac transplant recipients. Transpl Proc 41:2250–2252

    Article  Google Scholar 

  37. Svedenhag J, Henriksson J, Juhlin-Dannfelt A (1984) Beta-adrenergic blockade and training in human subjects: effects on muscle metabolic capacity. Am J Physiol Endocrinol Metab 247:E305–E311

    CAS  Google Scholar 

  38. Savin WM, Gordon EP, Kaplan SM et al (1985) Exercise training during long-term beta-blockade treatment in healthy subjects. Am J Cardiol 55:D101–D109

    Article  Google Scholar 

  39. Wilmore JH, Ewy GA, Freund BJ et al (1985) Cardiorespiratory alterations consequent to endurance exercise training during chronic beta-adrenergic blockade with atenolol and propranolol. Am J Cardiol 55:D142–D148

    Article  Google Scholar 

  40. Hansen JE, Ulubay G, Chow BF et al (2007) Mixed-expired and end-tidal CO2 distinguish between ventilation and perfusion defects during exercise testing in patients with lung and heart diseases. Chest 132:977–983

    Article  PubMed  Google Scholar 

  41. Sue DY, Wasserman K, Moricca RB et al (1988) Metabolic acidosis during exercise in patients with chronic obstructive pulmonary disease. Use of the V-slope method for anaerobic threshold determination. Chest 94:931–938

    Article  PubMed  CAS  Google Scholar 

  42. Midorikawa J, Hida W, Taguchi O et al (1997) Lack of ventilatory threshold in patients with chronic obstructive pulmonary disease. Respiration 64:76–80

    Article  PubMed  CAS  Google Scholar 

  43. Belman MJ, Epstein LJ, Doornbos D et al (1992) Noninvasive determinations of the anaerobic threshold. Reliability and validity in patients with COPD. Chest 102:1028–1034

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the VIDDA Foundation.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew N. Bartels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirapatarapong, W., Armstrong, H.F. & Bartels, M.N. Exercise Capacity and Ventilatory Response During Exercise in COPD Patients With and Without β Blockade. Lung 191, 531–536 (2013). https://doi.org/10.1007/s00408-013-9492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-013-9492-2

Keywords

Navigation