Skip to main content

Advertisement

Log in

Long-Term Effects of a 12-Week Exercise Training Program on Clinical Outcomes in Idiopathic Pulmonary Fibrosis

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Idiopathic pulmonary fibrosis (IPF) is a chronic, devastating, lung disease, with few therapeutic options. Data are limited with respect to the long-term effect of exercise training (ET) in IPF. This study sought to evaluate the long-term effects of a 12-week ET program on clinical outcomes in IPF patients.

Methods

Thirty-four IPF patients were randomly allocated to ET or control groups. ET group participated in a 12-week supervised exercise program, while the control group continued with regular medical treatment alone. Exercise capacity, 30 s-chair-stand test for leg strength, dyspnea, and Saint George’s Respiratory Questionnaire (SGRQ) for quality of life (QOL) were assessed at baseline and re-evaluated at 11 months from baseline. In addition, at 30-month time point from baseline, the impact of the 12-week intervention was analyzed with respect to survival and cardio-respiratory-related hospitalizations.

Results

Thirty-two patients completed the 12-week intervention and 28 patients (14 in each group) were re-evaluated. At 11-month follow-up, no significant differences between the groups and time effect were demonstrated for most outcomes. ET group showed preserved values at the baseline level while the control group showed a trend of deterioration. Only the 30 s-chair-stand test (mean difference 3 stands, p = 0.01) and SGRQ (mean difference −6 units, p = 0.037) were significantly different between the groups. At 30 months, the survival analysis showed three deaths, eight hospitalizations occurred in the control group versus one death, one lung transplantation and seven hospitalizations in the ET group, with no significant differences between groups.

Conclusions

At 11-month follow-up, the 12-week ET program showed clinical outcomes were preserved at baseline levels with some maintenance of improvements in leg strength and QOL in the ET group. The control group showed a trend of deterioration in the outcomes. At 30 months, the 12-week ET program did not show benefits in prognosis although the study was underpowered to detect such differences. We suggest including ET as a long-term continued treatment and as a core component of pulmonary rehabilitation programs for IPF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183(6):788–824. doi:10.1164/rccm.2009-040GL

    Article  PubMed  Google Scholar 

  2. Meltzer EB, Noble PW (2008) Idiopathic pulmonary fibrosis. Orphanet J Rare Dis 3:8. doi:10.1186/1750-1172-3-8

    Article  PubMed Central  PubMed  Google Scholar 

  3. King TE Jr, Bradford WZ, Castro-Bernardini S et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370(22):2083–2092. doi:10.1056/NEJMoa1402582

    Article  PubMed  Google Scholar 

  4. Noble PW, Albera C, Bradford WZ et al (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377(9779):1760–1769. doi:10.1016/S0140-6736(11)60405-4

    Article  CAS  PubMed  Google Scholar 

  5. Richeldi L, du Bois RM, Raghu G et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370(22):2071–2082. doi:10.1056/NEJMoa1402584

    Article  PubMed  Google Scholar 

  6. American Thoracic Society (ATS), and the European Respiratory Society (ERS) (2000) Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. Am J Respir Crit Care Med 161(2 Pt 1):646–664

    Google Scholar 

  7. Holland AE (2010) Exercise limitation in interstitial lung disease—mechanisms, significance and therapeutic options. Chron Respir Dis 7(2):101–111. doi:10.1177/1479972309354689

    Article  PubMed  Google Scholar 

  8. Spruit MA, Singh SJ, Garvey C et al (2013) An official american thoracic society/european respiratory society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med 188(8):e13–e64. doi:10.1164/rccm.201309-1634ST

    Article  PubMed  Google Scholar 

  9. Swigris JJ, Kuschner WG, Jacobs SS et al (2005) Health-related quality of life in patients with idiopathic pulmonary fibrosis: a systematic review. Thorax 60(7):588–594. doi:10.1136/thx.2004.035220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ries AL, Bauldoff GS, Carlin BW et al (2007) Pulmonary rehabilitation: joint ACCP/AACVPR evidence-based clinical practice guidelines. Chest 131(5 Suppl):4S–42S. doi:10.1378/chest.06-2418

    Article  PubMed  Google Scholar 

  11. Nici L, Donner C, Wouters E et al (2006) American Thoracic Society/European Respiratory Society statement on pulmonary rehabilitation. Am J Respir Crit Care Med 173(12):1390–1413. doi:10.1164/rccm.200508-1211ST

    Article  PubMed  Google Scholar 

  12. Kenn K, Gloeckl R, Behr J (2013) Pulmonary rehabilitation in patients with idiopathic pulmonary fibrosis—a review. Respiration 86(2):89–99. doi:10.1159/000354112

    Article  CAS  PubMed  Google Scholar 

  13. Vainshelboim B, Oliveira J, Yehoshua L et al (2014) Exercise training-based pulmonary rehabilitation program is clinically beneficial for idiopathic pulmonary fibrosis. Respiration 88:378–388. doi:10.1159/000367899

    Article  PubMed  Google Scholar 

  14. Nishiyama O, Kondoh Y, Kimura T et al (2008) Effects of pulmonary rehabilitation in patients with idiopathic pulmonary fibrosis. Respirology 13(3):394–399. doi:10.1111/j.1440-1843.2007.01205.x

    Article  PubMed  Google Scholar 

  15. Holland A, Hill C (2008) Physical training for interstitial lung disease. Cochrane Database Syst Rev 4:CD006322. doi:10.1002/14651858.CD006322.pub2

    PubMed  Google Scholar 

  16. Holland AE, Hill CJ, Conron M et al (2008) Short term improvement in exercise capacity and symptoms following exercise training in interstitial lung disease. Thorax 63(6):549–554. doi:10.1136/thx.2007.088070

    Article  CAS  PubMed  Google Scholar 

  17. Ryerson CJ, Cayou C, Topp F et al (2014) Pulmonary rehabilitation improves long-term outcomes in interstitial lung disease: a prospective cohort study. Respir Med 108(1):203–210. doi:10.1016/j.rmed.2013.11.016

    Article  PubMed  Google Scholar 

  18. Macintyre N, Crapo RO, Viegi G et al (2005) Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26(4):720–735. doi:10.1183/09031936.05.00034905

    Article  CAS  PubMed  Google Scholar 

  19. Miller MR, Crapo R, Hankinson J et al (2005) General considerations for lung function testing. Eur Respir J 26(1):153–161. doi:10.1183/09031936.05.00034505

    Article  CAS  PubMed  Google Scholar 

  20. Wanger J, Clausen JL, Coates A et al (2005) Standardisation of the measurement of lung volumes. Eur Respir J 26(3):511–522. doi:10.1183/09031936.05.00035005

    Article  CAS  PubMed  Google Scholar 

  21. Quanjer PH, Tammeling GJ, Cotes JE et al (1993) Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl 16:5–40

    Article  CAS  PubMed  Google Scholar 

  22. American Thoracic Society (ATS), American College of Chest Physicians (ACCP) (2003) Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 167:211–277. doi:10.1164/rccm.167.2.211

    Article  Google Scholar 

  23. American College of Sports Medicine (2014) ACSM’s Guidelines for exercise testing and prescription, 9th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  24. Ferrazza AM, Martolini D, Valli G et al (2009) Cardiopulmonary exercise testing in the functional and prognostic evaluation of patients with pulmonary diseases. Respiration 77(1):3–17. doi:10.1159/000186694

    Article  CAS  PubMed  Google Scholar 

  25. Palange P, Ward SA, Carlsen KH et al (2007) Recommendations on the use of exercise testing in clinical practice. Eur Respir J 29(1):185–209. doi:10.1183/09031936.00046906

    Article  CAS  PubMed  Google Scholar 

  26. American Thoracic Society (ATS) Statement (2002) Guidelines for the six-minute walk test. Am J Respir Crit Care Med 166:111–117. doi:10.1164/rccm.166/1/111

    Article  Google Scholar 

  27. Rikli RE, Jones CJ (2001) The senior fitness test manual. Human Kinetics, Champaign

    Google Scholar 

  28. Mahler DA, Wells CK (1988) Evaluation of clinical methods for rating dyspnea. Chest 93(3):580–586

    Article  CAS  PubMed  Google Scholar 

  29. Papiris SA, Daniil ZD, Malagari K et al (2005) The Medical Research Council dyspnea scale in the estimation of disease severity in idiopathic pulmonary fibrosis. Respir Med 99(6):755–761. doi:10.1016/j.rmed.2004.10.018

    Article  PubMed  Google Scholar 

  30. Peng S, Li Z, Kang J et al (2008) Cross-sectional and longitudinal construct validity of the Saint George’s Respiratory Questionnaire in patients with IPF. Respirology 13(6):871–879. doi:10.1111/j.1440-1843.2008.01359.x

    Article  PubMed  Google Scholar 

  31. Swigris JJ, Brown KK, Behr J et al (2010) The SF-36 and SGRQ: validity and first look at minimum important differences in IPF. Respir Med 104(2):296–304. doi:10.1016/j.rmed.2009.09.006

    Article  PubMed Central  PubMed  Google Scholar 

  32. Jenkins S, Hill K, Cecins NM (2010) State of the art: how to set up a pulmonary rehabilitation program. Respirology 15(8):1157–1173. doi:10.1111/j.1440-1843.2010.01849.x

    Article  PubMed  Google Scholar 

  33. Swigris JJ, Wamboldt FS, Behr J et al (2010) The 6 minute walk in idiopathic pulmonary fibrosis: longitudinal changes and minimum important difference. Thorax 65(2):173–177. doi:10.1136/thx.2009.113498

    Article  PubMed Central  PubMed  Google Scholar 

  34. Florey CD (1993) Sample size for beginners. BMJ 306(6886):1181–1184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Vickers AJ, Altman DG (2001) Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ 323(7321):1123–1124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24(3):69–71

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Altman DG, Bland JM (1998) Time to event (survival) data. BMJ 317(7156):468–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bland JM, Altman DG (1998) Survival probabilities (the Kaplan-Meier method). BMJ 317(7172):1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Satagopan JM, Ben-Porat L, Berwick M et al (2004) A note on competing risks in survival data analysis. Br J Cancer 91(7):1229–1235. doi:10.1038/sj.bjc.6602102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kenney WL, Wilmore J, Costill DL (2012) Physiology of sport and exercise, 5th edn. Human Kinetics, Champaign

    Google Scholar 

  41. Mujika I, Padilla S (2001) Cardiorespiratory and metabolic characteristics of detraining in humans. Med Sci Sports Exerc 33(3):413–421

    Article  CAS  PubMed  Google Scholar 

  42. Lemmer JT, Hurlbut DE, Martel GF et al (2000) Age and gender responses to strength training and detraining. Med Sci Sports Exerc 32(8):1505–1512

    Article  CAS  PubMed  Google Scholar 

  43. Mujika I, Padilla S (2000) Detraining: loss of training-induced physiological and performance adaptations. Part II: long term insufficient training stimulus. Sports Med 30(3):145–154

    Article  CAS  PubMed  Google Scholar 

  44. Otsuka T, Kurihara N, Fujii T et al (1997) Effect of exercise training and detraining on gas exchange kinetics in patients with chronic obstructive pulmonary disease. Clin Physiol 17(3):287–297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the study coordinators and nurses of the Pulmonary Institute for their help in the recruitment process, and the pulmonary function technicians for their professional assistance in the study. The authors also express their gratitude to Ms. Dalia Dawn Orkin for her important English language contributions and editing services.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baruch Vainshelboim.

Additional information

Trial registration: NCT01499745, www.Clinicaltrials.gov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vainshelboim, B., Oliveira, J., Fox, B.D. et al. Long-Term Effects of a 12-Week Exercise Training Program on Clinical Outcomes in Idiopathic Pulmonary Fibrosis. Lung 193, 345–354 (2015). https://doi.org/10.1007/s00408-015-9703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-015-9703-0

Keywords

Navigation