Skip to main content

Advertisement

Log in

Transport and Deposition of Micro-Aerosols in Realistic and Simplified Models of the Oral Airway

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A number of in vivo, in vitro and numerical studies have considered flow field characteristics and micro-particle deposition in the oral airway extending from the mouth through the larynx. These studies have highlighted the effects of flow rates, turbulence and particle characteristics on deposition values in realistic and simplified geometries. However, the effect of geometry simplifications on regional and local deposition patterns remains largely un-quantified for the oral airway and throughout the respiratory tract. The objective of this study is to assess the effects of geometry simplifications on regionally averaged and local micro-aerosol deposition characteristics in models of the extrathoracic oral airway. To achieve this objective, a realistic model of the oral airway has been constructed based on CT scans of a healthy adult in conjunction with measurements reported in the literature. Three other geometries with descending degrees of physical realism were constructed based on successive geometric simplifications of the realistic model. A validated low Reynolds number (LRN) k–ω turbulence model was employed to simulate laminar, transitional and fully turbulent flow regimes for 1–31 μm particles. Geometric simplifications were found to have a significant effect on aerosol dynamics, hot spot formations and cellular-level deposition values in the extrathoracic airway models considered. For all models, regional deposition efficiency results were found to be approximately within one standard deviation of available experimental data when plotted as a function of Stokes number. The realistic geometry provided the best predictions of regional deposition in comparison to experimental data as a function of particle diameter. Considering localized deposition, maximum deposition enhancement factors, which represent the ratio of local to total deposition, were one to two orders of magnitude higher for the realistic model. Geometric factors that significantly contributed to enhanced particle localization in the realistic model include a triangular-shaped glottis and a dorsal-sloped trachea. Therefore, highly realistic models of the oral airway geometry may be necessary to evaluate localized deposition patterns and hot spot formations, which are critical for accurately predicting cellular-level dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

Similar content being viewed by others

References

  1. Balashazy I., W. Hofmann. 1993 Particle deposition in airway bifurcations-I. Inspriatory flow. J. Aerosol Sci. 24:745–772

    Article  CAS  Google Scholar 

  2. Balashazy I., W. Hofmann. 1993 Particle deposition in airway bifurcations-II. Experiatory flow. J Aerosol Sci 24:773–786

    Article  CAS  Google Scholar 

  3. Balashazy I., W. Hofmann, T. Heistracher. 1999 Computation of local enhancement factors for the quantification of particle deposition patterns in airway bifurcations. J. Aerosol Sci. 30:185–203

    Article  CAS  Google Scholar 

  4. Balashazy I., W. Hofmann, T. Heistracher. 2003 Local particle deposition patterns may play a key role in the development of lung cancer. Trans. Physiol. 94:1719–1725

    Google Scholar 

  5. Brancatisano T., P. W. Collett, L. A. Engel. 1983 Respiratory movements of the vocal cords. J. Appl. Physiol. 54(5):1269–1276

    PubMed  CAS  Google Scholar 

  6. Chan T. L., M. Lippmann. 1980 Experimental measurements and emperical modeling of the regional deposition of inhaled particles in humans. Am. Ind. Hyg. Assoc. J. 41:399–409

    PubMed  CAS  Google Scholar 

  7. Cheng K. H., Y. S. Cheng, H. C. Yeh, D. L. Swift. 1997 Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage. J. Biomech. Eng. 119:476–482

    PubMed  CAS  Google Scholar 

  8. Cheng Y. S. 2003 Aerosol deposition in the extrathoracic region. Aerosol Sci. Tech. 37:659–671

    Article  CAS  Google Scholar 

  9. Cheng Y. S., Y. Zhou, B. T. Chen. 1999 Particle deposition in a cast of human oral airways. Aerosol Sci. Tech. 31:286–300

    Article  CAS  Google Scholar 

  10. Corcoran T. E., N Chigier. 2000 Characterization of the laryngeal jet using phase Doppler interferometry. J. Aerosol Med. 13(2):125–137

    Article  PubMed  CAS  Google Scholar 

  11. Crowe C. T., T. R. Troutt, J. N. Chung. 1996 Numerical models for two-phase turbulent flows. Ann. Rev. Fluid Mech. 28:11–43

    Article  Google Scholar 

  12. DeHaan W. H., W. H. Finlay. 2004 Predicting extrathoracic deposition from dry powder inhalers. J. Aerosol Sci. 35:309–331

    Article  CAS  Google Scholar 

  13. Ehtezazi T., M. A. Horsfield, P. W. Barry, C O’Callaghan. 2004 Dynamic change of the upper airway during inhalation via aerosol delivery devices. J. Aerosol Med. 14(4):325–332

    Article  Google Scholar 

  14. Finlay W. H. The Mechanics of Inhaled Pharmaceutical Aerosols. Academic Press, San Diego, 2001

    Google Scholar 

  15. Gemci T., T. E. Corcoran, N. Chigier. 2002 A numerical and experimental study of spray dynamics in a simple thrat model. Aerosol Sci. Tech. 36:18–38

    Article  CAS  Google Scholar 

  16. Ghalichi F., X. Deng, A. D. Champlain, Y. Douville, M. King, R. Guidoin. 1998 Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology 35(4&5):281–294

    Article  PubMed  CAS  Google Scholar 

  17. Goo J., C. S. Kim. 2003 Theoretical analysis of particle deposition in human lungs considering stochastic variations of airway morphology. J. Aerosol Sci. 34(5):585–602

    Article  CAS  Google Scholar 

  18. Grgic B., W. H. Finlay, P. K. P. Burnell, A. F. Heenan. 2004 In vitro intersubject and intrasubject deposition measurements in realistic mouth-throat geometries. J. Aerosol Sci. 35(8):1025–1040

    Article  CAS  Google Scholar 

  19. Grgic B., W. H. Finlay, A. F. Heenan. 2004 Regional aerosol deposition and flow measurements in an idealized mouth and throat. J. Aerosol Sci. 35(1):21–32

    Article  CAS  Google Scholar 

  20. Heenan A. F., W. H. Finlay, B. Grgic, A. Pollard, P. K. P. Burnell. 2004 An investigation of the relationship between the flow field and regional deposition in realistic extra-thoracic airways. J. Aerosol Sci. 35(8):1013–1023

    Article  CAS  Google Scholar 

  21. Heyder J., G. Rudolf. 1984 Mathematical-models of particle deposition in the human respiratory-tract. J. Aerosol Sci. 15(6):697–707

    Article  Google Scholar 

  22. Hofmann W., B. Asgharian, R. Winkler-Heil. 2002 Modeling intersubject variability of particle deposition in human lungs. J. Aerosol Sci. 33(2):219–235

    Article  CAS  Google Scholar 

  23. Kim C. S., D. Fisher. 1999 Deposition characteristics of aerosol particles in sequentially bifurcating airway models. Aerosol Sci. Technol. 31:198–220

    Article  CAS  Google Scholar 

  24. Kleinstreuer C., Z. Zhang. 2003 Laminar-to-turbulent fluid-particle flows in a human airway model. Int. J. Multiphase Flow 29(2):271–289

    Article  CAS  Google Scholar 

  25. Li W. I., M. Perzl, J. Heyder, R. Langer, J. D. Brain, K. H. Englmeier, R. W. Niven, D. A. Edwards. 1996 Aerodynamics and aerosol particle deaggregation phenomena in model oral-pharyngeal cavities. J. Aerosol Sci. 27(8):1269–1286

    Article  CAS  Google Scholar 

  26. Lin T. C., P. N. Breysse, B. L. Laube, D. L. Swift. 2001 Mouthpiece diameter affects deposition efficiency in cast models of the human oral airways. J. Aerosol Med. 14(3):335–341

    Article  PubMed  CAS  Google Scholar 

  27. Longest P. W., C. Kleinstreuer, J. R. Buchanan. 2004 Efficient computation of micro-particle dynamics including wall effects. Comput. Fluids 33(4):577–601

    Article  Google Scholar 

  28. Longest, P. W. and M. J. Oldham. Mutual enhancements of CFD modeling and experimental data: A case study of one micrometer particle deposition in a branching airway model. Inhalation Toxicol. 18(10):761−772, 2006

    Article  CAS  Google Scholar 

  29. Longest, P. W. and S. Vinchurkar. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med. Eng. Phys. 29:350−366, 2007

    Article  PubMed  Google Scholar 

  30. Longest, P. W. and S. Vinchurkar. Validating CFD predictions of respiratory aerosol deposition: Effects of upstream transition and turbulence. J. Biomech. 40:305−316, 2007

    Article  Google Scholar 

  31. Longest, P. W., S. Vinchurkar, and T. B. Martonen. Transport and deposition of respiratory aerosols in models of childhood asthma. J. Aerosol Sci. 37(10):1234−1257, 2006

    Article  CAS  Google Scholar 

  32. Loth E. 2000 Numerical approaches for motion of dispersed particles droplets and bubbles. Progr. Energy Combust. Sci. 26:161–223

    Article  Google Scholar 

  33. Lumb A. B., Nunn’s Applied Respiratory Physiology. Butterworth Heinemann, Oxford, 2000

    Google Scholar 

  34. Martonen, T. B. Surrogate experimental models for studying particle deposition in the human respiratory tract: An overview. In: S. D. Lee, editor, Aerosols. Lewis Publishers, Chesea, Michigan, 1986

    Google Scholar 

  35. Martonen T. B. 1993 Mathematical model for the selective deposition of inhaled pharmaceuticals. J. Pharm. Sci. 82(12):1191–1199

    Article  PubMed  CAS  Google Scholar 

  36. Martonen T. B., X. Guan, R. M. Schreck. 2001 Fluid dynamics in airway bifurcations: I. Primary flows. Inhalation Toxicol. 13(4):261–279

    Article  CAS  Google Scholar 

  37. Martonen T. B., C. J. Musante, R. A. Segal, J. D. Schroeter, D. Hwang, M. A. Dolovich, R. Burton, R. M. Spencer, J. S. Fleming. 2000 Lung models: Strengths and limitations. Resp. Care 45(6):712–736

    CAS  Google Scholar 

  38. Martonen T. B., J. D. Schroeter. 2003 Risk assessment dosimetry model for inhaled particulate matter: I. Human subjects. Toxicol. Lett. 138(1–2):119–132

    Article  PubMed  CAS  Google Scholar 

  39. Matida E. A., W. H. Finlay, L. B. Grgic. 2004 Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J. Aerosol Sci. 35(1):1–19

    Article  CAS  Google Scholar 

  40. McRobbie D. W., S. E. Pritchard. 2005 Studies of the human oropharyngeal airspaces using magnetic resonance imaging. III. The effects of device resistance with forced maneuver and tidal breathing on upper airway geometry. J. Aerosol Med.-Dep. Clear. Effects Lung 18(3):325–336

    Google Scholar 

  41. McRobbie D. W., S. Pritchard, R. A. Quest. 2003 Studies of the human oropharyngeal airspaces using magnetic resonance imaging. 1. Validation of a three-dimensional MRI method for producing ex vivo virtual and physical casts of the oropharyngeal airways during inspiration. J. Aerosol Med.-Dep. Clear. Effects Lung 16(4):401–415

    Google Scholar 

  42. Morsi S. A., A. J. Alexander. 1972 An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55(2):193–208

    Article  Google Scholar 

  43. Nowak N., P. P. Kakade, A. V. Annapragada. 2003 Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31:374–390

    Article  PubMed  Google Scholar 

  44. Oho K., R. Amemiya. Practical Fiberoptic Bronscopy. Igaku-Shoin, Tokyo, 1980

    Google Scholar 

  45. Oldham M. J., R. F. Phalen, T. Heistracher. 2000 Computational fluid dynamic predictions and experimental results for particle deposition in an airway model. Aerosol Sci. Technol. 32(1):61–71

    Article  CAS  Google Scholar 

  46. Pritchard S. E., D. W. McRobbie. 2004 Studies of the human oropharyngeal airspaces using magnetic resonance imaging. II. The use of three-dimensional gated MRI to determine the influence of mouthpiece diameter and resistance of inhalation devices on the oropharyngeal airspace geometry. J. Aerosol Med.-Dep. Clear. Effects Lung 17(4):310–324

    Google Scholar 

  47. Rauch, R. D., J. T. Batira, and N. T. Y. Yang. Spatial adaption procedures on unstructured meshes for accurate unsteady aerodynamic flow computations. Technical Report AIAA-91-1106

  48. Renotte C., V. Bouffioux, F. Wilquem. 2000 Numerical 3D analysis of oscillatory flow in the time-varying laryngeal channel. J. Biomech. 33(12):1637–1644

    Article  PubMed  CAS  Google Scholar 

  49. Roache P. J. Verification and Validation in Computational Science and Engineering. Hermosa Publisher, Albuquerque, NM, 1998

    Google Scholar 

  50. Rodenstein D. O., G. Dooms, Y. Thomas, G. Liistro, D. C. Stanescu, C. Culee, G. Auberttulkens. 1990 Pharyngeal shape and dimensions in healthy-subjects, snorers, and patients with obstructive sleep-apnea. Thorax 45(10):722–727

    PubMed  CAS  Google Scholar 

  51. Rudolf G. 1984 A mathematical-model for the deposition of aerosol-particles in the human respiratory-tract. J. Aerosol Sci. 15(3):195–199

    Article  Google Scholar 

  52. Schlesinger R. B., M. Lippmann. 1978 Selective particle deposition and bronchogenic carcinoma. Environ. Res. 15:424–431

    Article  PubMed  CAS  Google Scholar 

  53. Stahlhofen W., J. Gebhart, J. Heyder, G Scheuch. 1983 New regional deposition data of the human respiratory tract. J. Aerosol Sci. 14:186–188

    Article  Google Scholar 

  54. Stahlhofen W., G. Rudolf, A. C. James. 1989 Intercomparison of experimental regional aerosol deposition data. J. Aerosol Med. 2(3):285–308

    Article  Google Scholar 

  55. Stapleton K. W., E. Guentsch, M. K. Hoskinson, W. H. Finlay. 2000 On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: A comparison with experiment. J. Aerosol Sci. 31(6):739–749

    Article  CAS  Google Scholar 

  56. Wilcox D. C. Turbulence Modeling for CFD, 2. DCW Industries, Inc., California, 1998

    Google Scholar 

  57. Yu C. P., C. K. Diu, T. T. Soong. 1981 Statistical analysis of aerosol deposition in nose and mouth. Am. Ind. Hyg. Assoc. J. 42:726–733

    PubMed  CAS  Google Scholar 

  58. Zhang Y., W. H. Finlay, E. A. Matida. 2004 Particle deposition measurements and numerical simulation in a highly idealized mouth-throat. J. Aerosol Sci. 35(7):789

    Article  CAS  Google Scholar 

  59. Zhang Z., C. Kleinstreuer. 2001 Effect of particle inlet distributions on deposition in a triple bifurcation lung airway model. J. Aerosol Med.-Dep. Clear. Effects Lung 14(1):13–29

    CAS  Google Scholar 

  60. Zhang Z., C. Kleinstreuer. 2002 Transient airflow structures and particle transport in a sequentially branching lung airway model. Phys. Fluids 14(2):862–880

    Article  CAS  Google Scholar 

  61. Zhang Z., C. Kleinstreuer. 2003 Low-Reynolds-number turbulent flows in locally constricted conduits: A comparison study. Aiaa J. 41(5):831–840

    Google Scholar 

  62. Zhang Z., C. Kleinstreuer. 2003 Species heat and mass transfer in a human upper airway model. Int. J. Heat Mass Trans. 46(25):4755–4768

    Article  Google Scholar 

  63. Zhang Z., C. Kleinstreuer. 2004 Airflow structures and nano-particle deposition in a human upper airway model. J. Comput. Phys. 198(1):178–210

    Article  Google Scholar 

  64. Zhang Z., C. Kleinstreuer, J. F. Donohue, C. S. Kim. 2005 Comparison of micro- and nano-size particle depositions in a human upper airway model. J. Aerosol Sci. 36(2):211–233

    Article  CAS  Google Scholar 

  65. Zhang Z., C. Kleinstreuer, C. S. Kim. 2001 Flow structure and particle transport in a triple bifurcation airway model. J. Fluids Eng.-Trans. ASME 123(2):320–330

    Article  CAS  Google Scholar 

  66. Zhang Z., C. Kleinstreuer, C. S. Kim. 2002 Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. J. Aerosol Sci. 33(2):257–281

    Article  CAS  Google Scholar 

  67. Zhang Z., C. Kleinstreuer, C. S. Kim. 2002 Micro-particle transport and deposition in a human oral airway model. J. Aerosol Sci. 33(12):1635–1652

    Article  CAS  Google Scholar 

  68. Zhang Z., C. Kleinstreuer, C. S. Kim. 2006 Water vapor transport and its effects on the deposition of hygroscopic droplets in a human upper airway model. Aerosol Sci. Technol. 40:52–67

    Google Scholar 

  69. Zhang Z., T. B. Martonen. 1997 Deposition of ultrafine aerosols in human tracheobronchial airways. Inhalation Toxicol. 9:99–110

    Article  CAS  Google Scholar 

  70. Zhao Y., B. B. Lieber. 1994 Steady inspiratory flow in a model symmetrical bifurcation. J. Biomech. Eng. 116(4):488–496

    PubMed  CAS  Google Scholar 

  71. Zhou Y., Y. S. Cheng. 2005 Particle deposition in a cast of human tracheobrochial airways. Aerosol Sci. Technol. 39:492–500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored in part by Philip Morris USA under grant 06-i077-01 (Dr. Mohammad R. Hajaligol, Program Manager). The use of CT data provided by Dr. Karen A. Kurdziel in the VCU Department of Radiology and Molecular Imaging Center under IRB approval 06263 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Worth Longest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, J., Longest, P.W. Transport and Deposition of Micro-Aerosols in Realistic and Simplified Models of the Oral Airway. Ann Biomed Eng 35, 560–581 (2007). https://doi.org/10.1007/s10439-006-9245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9245-y

Keywords

Navigation