Skip to main content

Advertisement

Log in

Hypoxia: A key regulator of angiogenesis in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Angiogenesis is an important mediator of tumor progression. As tumors expand, diffusion distances from the existing vascular supply increases resulting in hypoxia. Sustained expansion of a tumor mass requires new blood vessel formation to provide rapidly proliferating tumor cells with an adequate supply of oxygen and metabolites. The key regulator of hypoxia-induced angiogenesis is the transcription factor hypoxia inducible factor (HIF)-1. Multiple HIF-1 target genes have been shown to modulate angiogenesis by promoting the mitogenic and migratory activities of endothelial cells. Because of this, hypoxia-induced angiogenesis has become an attractive target for cancer therapy, however the mechanisms involved during this process and how best to target it for cancer therapy are still under investigation. This review will cover the current understanding of hypoxia-induced tumor angiogenesis and discuss the caveats of hypoxia-targeted antiangiogenic therapy for the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. New England Journal of Medicine, 285, 1182–1186.

    Article  PubMed  CAS  Google Scholar 

  2. Gimbrone, M. A., Jr., Leapman, S. B., Cotran, R. S., & Folkman, J. (1972). Tumor dormancy in vivo by prevention of neovascularization. Journal of Experimental Medicine, 136, 261–276.

    Article  PubMed  Google Scholar 

  3. Brem, S., Brem, H., Folkman, J., Finkelstein, D., & Patz, A. (1976). Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Research, 36, 2807–2812.

    PubMed  CAS  Google Scholar 

  4. Parangi, S., O’Reilly, M., Christofori, G., Holmgren, L., Grosfeld, J., Folkman, J. et al. (1996). Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 93, 2002–2007.

    Article  PubMed  CAS  Google Scholar 

  5. Holmgren, L., O’Reilly, M. S., Folkman, J. (1995). Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Medicine, 1, 149–153.

    Article  CAS  Google Scholar 

  6. Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6, 389–395.

    Article  CAS  Google Scholar 

  7. Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 3, 401–410.

    Article  PubMed  CAS  Google Scholar 

  8. Naumov, G. N., Akslen, L. A., & Folkman, J. (2006). Role of angiogenesis in human tumor dormancy: Animal models of the angiogenic switch. Cell Cycle, 5, 1779–1787.

    PubMed  CAS  Google Scholar 

  9. Folkman, J., Watson, K., Ingber, D., & Hanahan, D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature, 339, 58–61.

    Article  PubMed  CAS  Google Scholar 

  10. North, S., Moenner, M., & Bikfalvi, A. (2005). Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Letter, 218, 1–14.

    Article  CAS  Google Scholar 

  11. Lin. E. Y., Li, J. F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D. A., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66, 11238–11246.

    Article  PubMed  Google Scholar 

  12. Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12493–12498.

    Article  PubMed  CAS  Google Scholar 

  13. Holash, J., Maisonpierre, P. C., Compton. D., Boland, P., Alexander, C. R., Zagzag, D., et al. (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science, 284, 1994–1998.

    Article  PubMed  CAS  Google Scholar 

  14. Giordano, F. J., & Johnson, R. S (2001). Angiogenesis: The role of the microenvironment in flipping the switch. Current Opinion in Genetics & Development, 11, 35–40.

    Article  CAS  Google Scholar 

  15. Semenza, G. L. (2004). Hydroxylation of HIF-1: Oxygen sensing at the molecular level. Physiology (Bethesda), 19, 176–182.

    CAS  Google Scholar 

  16. Peng, J., Zhang, L., Drysdale, L., & Fong, G. H. (2000). The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 97, 8386–8391.

    Article  PubMed  CAS  Google Scholar 

  17. Ema, M., Taya, S., Yokotani, N., Sogawa, K., Matsuda, Y., & Fujii-Kuriyama, Y. (1997). A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proceedings of the National Academy of Sciences of the United States of America, 94, 4273–4278.

    Article  PubMed  CAS  Google Scholar 

  18. Makino, Y., Cao, R., Svensson, K., Bertilsson, G., Asman, M., Tanaka, H., et al. (2001). Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature, 414, 550–554.

    Article  PubMed  CAS  Google Scholar 

  19. Ryan, H. E., Lo, J., & Johnson, R. S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO Journal, 17, 3005–3015.

    Article  PubMed  CAS  Google Scholar 

  20. Maxwell, P. H., Dachs, G. U., Gleadle, J. M., Nicholls, L. G., Harris, A. L., Stratford, I. J., et al. (1997). Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 94, 8104–8109.

    Article  PubMed  CAS  Google Scholar 

  21. Stoeltzing, O., McCarty, M. F., Wey, J. S., Fan, F., Liu, W., Belcheva, A., et al. (2004) Ellis LM: Role of hypoxia-inducible factor 1alpha in gastric cancer cell growth, angiogenesis, and vessel maturation. Journal of the National Cancer Institute, 96, 946–956.

    Article  PubMed  CAS  Google Scholar 

  22. Jensen, R. L., Ragel, B. T., Whang, K., & Gillespie, D. (2006). Inhibition of hypoxia inducible factor-1alpha (HIF-1alpha) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. Journal of Neuro-oncology, 78, 233–247.

    Article  PubMed  CAS  Google Scholar 

  23. Bos, R., Zhong, H., Hanrahan, C. F., Mommers, E. C., Semenza, G. L., Pinedo, H. M., et al. (2001) Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. Journal of the National Cancer Institute, 93, 309–314

    Article  PubMed  CAS  Google Scholar 

  24. Liao, D., Corle, C., Seagroves, T. N., & Johnson, R. S. (2007). Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Research, 67, 563–572.

    Article  PubMed  CAS  Google Scholar 

  25. Tang, N., Wang, L., Esko, J., Giordano, F. J., Huang, Y., Gerber, H. P., et al. (2004). Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell, 6, 485–495.

    Article  PubMed  CAS  Google Scholar 

  26. Kondo, K., & Kaelin, W. G., Jr. (2001) The von Hippel-Lindau tumor suppressor gene. Experimental Cell Research, 264, 117–125.

    Article  PubMed  CAS  Google Scholar 

  27. Mahon, P. C., Hirota, K., & Semenza, G. L. (2001). FIH-1: A novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes & Development, 15, 2675–2686.

    Article  CAS  Google Scholar 

  28. Lando, D., Peet, D. J., Gorman, J. J., Whelan, D. A., Whitelaw, M. L., & Bruick, R. K. (1996). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes & Development, 16, 1466–1471.

    Article  CAS  Google Scholar 

  29. Arany, Z., Huang, L. E., Eckner, R., Bhattacharya, S., Jiang, C., Goldberg, M. A., et al. (1996). An essential role for p300/CBP in the cellular response to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 93, 12969–12973.

    Article  PubMed  CAS  Google Scholar 

  30. Richard, D. E., Berra, E., Gothie, E., Roux, D., & Pouyssegur, J. (1999). p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. Journal of Biological Chemistry, 274, 32631–32637.

    Article  PubMed  CAS  Google Scholar 

  31. Mylonis, I., Chachami, G., Samiotaki, M., Panayotou, G., Paraskeva, E., Kalousi, A., et al. (2006). Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. Journal of Biological Chemistry, 281, 33095–33106.

    Article  PubMed  CAS  Google Scholar 

  32. Shaw, R. J., & Cantley, L. C. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 441, 424–430.

    Article  PubMed  CAS  Google Scholar 

  33. Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M. M., et al. (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Research, 60, 1541–1545.

    PubMed  CAS  Google Scholar 

  34. Blancher, C., Moore, J. W., Robertson, N., & Harris, A. L. (2001) Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Research, 61, 7349–7355.

    PubMed  CAS  Google Scholar 

  35. Poulaki, V., Mitsiades, C. S., McMullan, C., Sykoutri, D., Fanourakis, G., Kotoula, V., et al. (2003). Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. Journal of Clinical Endocrinology and Metabolism, 88, 5392–5398.

    Article  PubMed  CAS  Google Scholar 

  36. Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. Genes & Development, 14, 391–396.

    CAS  Google Scholar 

  37. Grunstein, J., Masbad, J. J., Hickey, R., Giordano, F., & Johnson, R. S. (2000) Isoforms of vascular endothelial growth factor act in a coordinate fashion To recruit and expand tumor vasculature. Molecular and Cellular Biology, 20, 7282–7291.

    Article  PubMed  CAS  Google Scholar 

  38. Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16, 4604–4613.

    PubMed  CAS  Google Scholar 

  39. Olsson, A. K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling—in control of vascular function. Nature Reviews Molecular Cell Biology, 7, 359–371.

    Article  PubMed  CAS  Google Scholar 

  40. Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., et al. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380, 439–442.

    Article  PubMed  CAS  Google Scholar 

  41. Grunstein, J., Roberts, W. G., Mathieu-Costello, O., Hanahan, D., Johnson, R. S. (1999). Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Research, 59, 1592–1598.

    PubMed  CAS  Google Scholar 

  42. Mancuso, M. R., Davis, R., Norberg, S. M., O’Brien, S., Sennino, B., Nakahara, T. et al. (2006). Rapid vascular regrowth in tumors after reversal of VEGF inhibition. Journal of Clinical Investigation, 116, 2610–2621.

    Article  PubMed  CAS  Google Scholar 

  43. Das, B., Yeger, H., Tsuchida, R., Torkin, R., Gee, M. F., Thorner, P. S. et al. (2005). A hypoxia-driven vascular endothelial growth factor/Flt1 autocrine loop interacts with hypoxia-inducible factor-1alpha through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathway in neuroblastoma. Cancer Research, 65, 7267–7275.

    Article  PubMed  CAS  Google Scholar 

  44. Morbidelli, L., Donnini, S., & Ziche, M. (2003). Role of nitric oxide in the modulation of angiogenesis. Current Pharmaceutical Design, 9, 521–530.

    Article  PubMed  CAS  Google Scholar 

  45. Kimura, H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T., D’Acquisto, F., et al. (2000). Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: Control of hypoxia-inducible factor-1 activity by nitric oxide. Blood, 95, 189–197.

    PubMed  CAS  Google Scholar 

  46. Palmer, L. A., Semenza, G. L., Stoler, M. H., & Johns, R. A. (1998). Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. American Journal of Physiology, 274, L212–219.

    PubMed  CAS  Google Scholar 

  47. Jung, F., Palmer, L. A., Zhou, N., & Johns, R. A. (2000). Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circulation Research, 86, 319–325.

    PubMed  CAS  Google Scholar 

  48. Coulet, F., Nadaud, S., Agrapart, M., & Soubrier, F. (2003). Identification of hypoxia-response element in the human endothelial nitric oxide synthase gene promoter. Journal of Biological Chemistry, 278, 46230–46240.

    Article  PubMed  CAS  Google Scholar 

  49. Cooke, J. P. (2003). NO and angiogenesis. Atherosclerosis. Supplement, 4, 53–60.

    Article  CAS  Google Scholar 

  50. Rossig, L., Fichtlscherer, B., Breitschopf, K., Haendeler, J., Zeiher, A. M., Mulsch, A., et al. (1999). Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. Journal of Biological Chemistry, 274, 6823–6826.

    Article  PubMed  CAS  Google Scholar 

  51. Ellies, L. G, Fishman, M., Hardison, J., Kleeman, J., Maglione, J. E., Manner, C. K. et al. (2003). Mammary tumor latency is increased in mice lacking the inducible nitric oxide synthase. International Journal of Cancer, 106, 1–7.

    Article  CAS  Google Scholar 

  52. Cullis, E. R., Kalber, T. L., Ashton, S. E., Cartwright, J. E., Griffiths, J. R., Ryan, A. J., et al. (2006). Tumour overexpression of inducible nitric oxide synthase (iNOS) increases angiogenesis and may modulate the anti-tumour effects of the vascular disrupting agent ZD6126. Microvascular Research, 71, 76–84.

    Article  PubMed  CAS  Google Scholar 

  53. Grose, R., & Dickson, C. (2005). Fibroblast growth factor signaling in tumorigenesis. Cytokine & Growth Factor Reviews, 16, 179–186.

    Article  CAS  Google Scholar 

  54. Shi, Y. H., Wang, Y. X., Bingle, L., Gong, L. H., Heng, W. J., Li, Y., et al. (2005). In vitro study of HIF-1 activation and VEGF release by bFGF in the T47D breast cancer cell line under normoxic conditions: involvement of PI-3K/Akt and MEK1/ERK pathways. Journal of Pathology, 205, 530–536.

    Article  PubMed  CAS  Google Scholar 

  55. Pore, N., Liu, S., Haas-Kogan, D. A., O’Rourke, D. M., & Maity, A. (2003). PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Cancer Research, 63, 236–241.

    PubMed  CAS  Google Scholar 

  56. Calvani, M., Rapisarda, A., Uranchimeg, B., Shoemaker. R. H., & Melillo, G. (2006). Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood, 107, 2705–2712.

    Article  PubMed  CAS  Google Scholar 

  57. Li, J., Shworak, N. W., & Simons, M. (2002). Increased responsiveness of hypoxic endothelial cells to FGF2 is mediated by HIF-1alpha-dependent regulation of enzymes involved in synthesis of heparan sulfate FGF2-binding sites. Journal of Cell Science, 115, 1951–1959.

    PubMed  CAS  Google Scholar 

  58. Brat, D. J., & Mapstone, T. B. (2003). Malignant glioma physiology: Cellular response to hypoxia and its role in tumor progression. Annals of Internal Medicine, 138, 659–668.

    PubMed  Google Scholar 

  59. Arteaga, C. L. (2002). Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist, 7(Suppl 4), 31–39.

    Article  PubMed  CAS  Google Scholar 

  60. Ueda, S., Basaki, Y., Yoshie, M., Ogawa, K., Sakisaka, S., Kuwano, M., et al. (2006). PTEN/Akt signaling through epidermal growth factor receptor is prerequisite for angiogenesis by hepatocellular carcinoma cells that is susceptible to inhibition by gefitinib. Cancer Research, 66, 5346–5353.

    Article  PubMed  CAS  Google Scholar 

  61. Amin, D. N., Hida, K., Bielenberg, D. R., & Klagsbrun, M. (2006). Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Research, 66, 2173–2180.

    Article  PubMed  CAS  Google Scholar 

  62. Yoshida, D., Kim, K., Noha, M., & Teramoto, A. (2006). Hypoxia inducible factor 1-alpha regulates of platelet derived growth factor-B in human glioblastoma cells. Journal of Neuro-oncology, 76, 13–21.

    Article  PubMed  CAS  Google Scholar 

  63. Nakamura, K., Taguchi, E., Miura, T., Yamamoto, A., Takahashi, K., Bichat, F., et al. (2006). KRN951, a highly potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, has antitumor activities and affects functional vascular properties. Cancer Research, 66, 9134–9142.

    Article  PubMed  CAS  Google Scholar 

  64. Lederle, W., Stark, H. J., Skobe, M., Fusenig, N. E., & Mueller, M. M. (2006). Platelet-derived growth factor-BB controls epithelial tumor phenotype by differential growth factor regulation in stromal cells. American Journal of Pathology, 169, 1767–1783.

    Article  PubMed  CAS  Google Scholar 

  65. Pages, G., & Pouyssegur, J. (2005). Transcriptional regulation of the Vascular Endothelial Growth Factor gene–a concert of activating factors. Cardiovascular Research, 65, 564–573.

    Article  PubMed  CAS  Google Scholar 

  66. Huang, S., Pettaway, C. A., Uehara, H., Bucana, C. D., & Fidler, I. J. (2001). Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene, 20, 4188–4197.

    Article  PubMed  CAS  Google Scholar 

  67. Schmidt, D., Textor, B., Pein, O. T., Licht, A. H., Andrecht, S., Sator-Schmitt, et al. (2007). Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. EMBO Journal, 26, 710–719.

    Article  PubMed  CAS  Google Scholar 

  68. Mizukami, Y., Li, J., Zhang, X., Zimmer, M. A., Iliopoulos, O., & Chung, D. C. (2004). Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Research, 64, 1765–1772.

    Article  PubMed  CAS  Google Scholar 

  69. Mizukami, Y., Jo, W. S., Duerr, E. M., Gala, M., Li, J., Zhang, X., et al. (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nature Medicine, 11, 992–997.

    CAS  Google Scholar 

  70. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3, 721–732.

    Article  PubMed  CAS  Google Scholar 

  71. Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu N., Selig, M., et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell, 94, 715–725.

    Article  PubMed  CAS  Google Scholar 

  72. Blouw, B., Song, H., Tihan, T., Bosze, J., Ferrara, N., Gerber, H. P., et al. (2003). The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell, 4, 133–146.

    Article  PubMed  CAS  Google Scholar 

  73. Zaman, K., Ryu, H., Hall, D., O’Donovan, K., Lin, K. I., Miller M. P., et al. (1999). Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. Journal of Neuroscience, 19, 9821–9830.

    PubMed  CAS  Google Scholar 

  74. Siddiq, A., Ayoub, I. A., Chavez, J. C., Aminova, L., Shah, S., LaManna, J. C., et al. (2005). Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. Journal of Biological Chemistry, 280, 41732–41743.

    Article  PubMed  CAS  Google Scholar 

  75. Lee, H. J., Kim, K. S., Park, I. H., & Kim, S. U. (2007). Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS ONE 2: e156.

  76. Oosthuyse, B., Moons, L., Storkebaum, E., Beck, H., Nuyens, D., Brusselmans, K., et al. (2001). Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genetics, 28, 131–138

    Article  PubMed  CAS  Google Scholar 

  77. Martinez, P., Esbrit, P., Rodrigo, A., Alvarez-Arroyo, M. V., Martinez, M. E. (2002). Age-related changes in parathyroid hormone-related protein and vascular endothelial growth factor in human osteoblastic cells. Osteoporosis International, 13, 874–881.

    Article  PubMed  CAS  Google Scholar 

  78. Thebaud, B., Ladha, F., Michelakis, E. D., Sawicka, M., Thurston, G., Eaton, F., et al. (2005). Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation, 112, 2477–2486.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall S. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, D., Johnson, R.S. Hypoxia: A key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26, 281–290 (2007). https://doi.org/10.1007/s10555-007-9066-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9066-y

Keywords

Navigation