Skip to main content
Log in

Relationship between the Upper Airway and Obstructive Sleep Apnea-Hypopnea Syndrome in Morbidly Obese Women

  • Published:
Obesity Surgery Aims and scope Submit manuscript

Background

The authors studied changes in the upper airway in morbidly obese women and the relationship to sleep apnea-hypopnea syndrome (OSAS).

Methods

Patients underwent a cardiorespiratory polygraphic study, respiratory function test (spirometry, plethysmography, maximum inspiratory pressures and arterial blood gas analysis), and computed tomographic studies of the upper airway.

Results

40 morbidly obese women being evaluated for bariatric surgery (mean age 39.6 ±–.6 years old, BMI 48.7 ±–.6 kg/m2) were studied. 37 women had OSAS, and 14 had severe OSAS. Results on respiratory function tests were normal. BMI and weight had a positive correlation with apnea-hypopnea index (AHI), apnea index (AI), desaturation index (DI), lowest oxygen saturation and CT90. Uvula diameter had a negative correlation with FEV1, FVC, VC IN and a positive correlation with TLC. Retropharynx soft tissue at the retropalatal level had a negative correlation with FEV1, FVC and VC IN. The oropharynx area at maximal inspiration (total lung capacity) obtained a negative correlation with the AHI (r– −0.423, P––.044), AI (r– −0.484, P––.042) and DI (r– −0.484, P––.019).

Conclusions

Prevalence of OSAS in morbidly obese women is very high. Our results show the significant correlation between BMI and AHI in morbidly obese women. Uvula diameter and retropharynx soft tissue are the upper airway parameters with higher relationship with pulmonary function. A reduction in the cross-sectional area of the airway at the level of the oropharynx could be related to the severity of OSAS in morbidly obese women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FRC:

functional residual capacity

ERV:

expiratory reserve volume

FEV1:

forced expiratory volume in 1 second

FVC:

forced vital capacity

VC IN:

vital capacity on inspiration

TLC:

total lung capacity

RT:

retropharyngeal tissue

CT90:

% of time with O

DI:

desaturation index

PO.1:

mouth occlusion pressure at 100 ms beginning inspiratioin

TTmu :

tension-time index of inspiratory muscles

Rtot :

total airway resistance

PImax :

maximal static inspiratory pressure

References

  1. National Institutes of Health. National Heart, Lung, and Blood Institute. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. The evidence report. Obes Res 1998; 6(S2): 51S–09S.

    Google Scholar 

  2. Ray CS, Sue DY, Bray G et al. Effects of obesity on respiratory function. Am Rev Respir Dis 1983; 128: 501–.

    CAS  PubMed  Google Scholar 

  3. Gibson GJ. Obesity, respiratory function and breathlessness. Thorax 2000; 55(S1): 41–.

    Article  Google Scholar 

  4. Weiner P, Wiaizman J, Weiner M et al. Influence of excessive weight loss after gastroplasty for morbid obesity on respiratory muscle performance. Thorax 1998; 53: 39–2.

    Article  CAS  PubMed  Google Scholar 

  5. Hamoui N, Anthone G, Crookes P. The value of pulmonary function testing prior to bariatric surgery. Obes Surg 2006; 16: 1570–.

    Article  PubMed  Google Scholar 

  6. Shahi B, Praglowski B, Deitel M. Sleep-related disorders in the obese. Obes Surg 1992; 2: 157–8.

    Article  PubMed  Google Scholar 

  7. Strobel RJ, Rosen RC. Obesity and weight loss in obstructive sleep apnea: a critical review. Sleep 1996; 19: 104–5.

    CAS  PubMed  Google Scholar 

  8. Young T, Palta M, Dempsey J et al. The occurrence of sleepdisordered breathing among middle-aged adults. N Engl J Med 1993; 32: 1230–.

    Article  Google Scholar 

  9. Vgontzas AN, Tan TL, Bixler EO et al. Sleep apnea and sleep disruption in obese patients. Arch Intern Med 1994; 154: 1705–1.

    Article  CAS  PubMed  Google Scholar 

  10. Dixon JB, Schachler LM, O’Brien PE. Sleep disturbance and obesity: changes following surgically induced weight loss. Arch Intern Med 2001; 161: 102–.

    Article  CAS  PubMed  Google Scholar 

  11. Rajala R, Partinen M, Sane T et al. Obstructive sleep apnoea syndrome in morbidly obese patients. J Intern Med 1991; 230: 125–.

    Article  CAS  PubMed  Google Scholar 

  12. Douglas NJ, Polo O. Pathogenesis of obstructive sleep apnea/hypoapnea syndrome. Lancet 1994; 344: 653–.

    Article  CAS  PubMed  Google Scholar 

  13. Caballero P, Álvarez-Sala R, García-Río F et al. CT in the evaluation of the upper airway in healthy subjects and in patients with obstructive sleep apnea syndrome. Chest 1998; 113: 111–.

    Article  CAS  PubMed  Google Scholar 

  14. Gazayerli M, Bleibel W, Elhorr A et al. The shape of the epiglottis reflects improvement in upper airway obstruction after weight loss. Obes Surg 2006; 16: 945–.

    Article  PubMed  Google Scholar 

  15. Pepin JL, Veale D, Ferretti FL et al. Obstructive sleep apnea syndrome: hooked appearance of the soft palate in awake patients –cephalometric and CT findings. Radiology 1999; 210: 163–0.

    CAS  PubMed  Google Scholar 

  16. Jäger L, Gunther E, Gauger J et al. Fluoroscopic MR of the pharynx in patients with obstructive sleep apnea. AJRN 1998; 19: 1205–4.

    Google Scholar 

  17. Ocon Alonso E. La vía aérea superior valorada mediante tomografía computarizada en mujeres y hombres y su modificación en el síndrome de apnea obstructiva del sueño. Tesis Doctoral. Facultad de Medicina. Madrid: Editorial Complutense. 1997.

  18. Quanjer PH, Tammeling GJ, Cotes JE et al. Lung volumes and forced ventilatory flows. Eur Respir J 1993; 6 (Suppl 16): 5–0.

    Google Scholar 

  19. European Community for Coal and Steel. Standarization of the lung function tests. Bull Eur Physiopath Respir 1983; 19 (Suppl 15): 1–5.

    Google Scholar 

  20. García-Río F, Prados C, Diez-Tejedor E et al. Breathing pattern and central ventilatorydrive in mild and moderate generalised myasthenia gravis. Thorax 1994; 49: 703–.

    Article  PubMed  Google Scholar 

  21. Garcia-Río F, Pino JM, Ruíz A et al. Accuracy of noninvasive estimates of respiratory muscle effort during spontaneous breathing in restrictive diseases. J Appl Physiol 2003; 5: 1542–.

    Google Scholar 

  22. Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in adults. The report of an American Academy of Sleep Medicine task force. Sleep 1999: 22: 667–9.

    Google Scholar 

  23. Consenso Nacional sobre el síndrome de apneas-hipopneas del sueño. Grupo Español de Sueño (GES). Arch Bronconeumol 2005; 41 (Supl 4): 12–9.

    Google Scholar 

  24. EEG arousals: scoring rules and examples. A preliminary report from the sleep disorders atlas task force of the American Sleep Disorders Association. Sleep 1992; 15: 174–4.

    Google Scholar 

  25. Fogel RB, Malhotra A, Dalagiorgou G et al. Anatomic and physiologic predictors of apnea severity in morbidly obese subjects. Sleep 2003; 2: 150–.

    Google Scholar 

  26. Frey WC, Pilcher J. Obstructive sleep-related breathing disorders in patients evaluated for bariatric surgery. Obes Surg 2003; 13: 676–3.

    Article  PubMed  Google Scholar 

  27. Rasheid S, Banasiak M, Gallagher S et al. Gastric bypass is an effective treatment for obstructive sleep apnea in patients with clinically significant obesity. Obes Surg 2003; 13: 58–1.

    Article  PubMed  Google Scholar 

  28. Dixon JB, Schachter LM, O’Brien PE. Predicting sleep apnea and excessive day sleepiness in the severely obese. Chest 2003; 123: 1134–1.

    Article  PubMed  Google Scholar 

  29. Pillar G, Peled N, Katz N et al. Predictive value of specific risk factors, symptoms and signs, in diagnosing obstructive sleep apnea and its severity. J Sleep Res 1994; 3: 241–.

    Article  PubMed  Google Scholar 

  30. Haponik EF, Smith PL, Bohlman ME et al. Computerized tomography in obstructive sleep apnea. Am Rev Respir Dis 1983; 127: 221–.

    CAS  PubMed  Google Scholar 

  31. Polo OJ, Tafti M, Fraga J et al. Why don’t all heavy snorers have obstructive sleep apnea?. Am Rev Respir Dis 1991; 143: 1288–3.

    CAS  PubMed  Google Scholar 

  32. Avrahami E, Englender M. Relation between CT axial cross sectional area of the oropharynx and obstructive sleep apnea syndrome in adults. AJNR 1995; 16: 135–0.

    CAS  PubMed  Google Scholar 

  33. Mortimore IL, Marshall I, Wraith PK et al. Neck and total body fat deposition in nonobese and obese patients with sleep apnea compared with that in control subjects. Am J Respir Crit Care Med 1998; 157: 280–.

    CAS  PubMed  Google Scholar 

  34. Schwab RJ, Pasirstein M, Pierson R et al. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med 2003; 168: 522–0.

    Article  PubMed  Google Scholar 

  35. Nuñez R, Rey de Castro J, Socarras E et al. Validation study of a polygraphic screening device (BREAS SC20) in the diagnosis of sleep apnea-hypopnea syndrome. Arch Bronconeumol 2003; 39: 537–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Santiago-Recuerda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiago-Recuerda, A., Gómez-Terreros, F.J., Caballero, P. et al. Relationship between the Upper Airway and Obstructive Sleep Apnea-Hypopnea Syndrome in Morbidly Obese Women. OBES SURG 17, 689–697 (2007). https://doi.org/10.1007/s11695-007-9120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-007-9120-4

Key words

Navigation