Skip to main content
Log in

Surgical reoxygenation injury of the myocardium in cyanotic patients: clinical relevance and therapeutic strategies by normoxic management during cardiopulmonary bypass

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Cyanotic hearts are associated with depleted endogenous antioxidants (glutathione peroxidase, superoxide dismutase, and catalase), and thereby is more susceptible to myocardial ischemia/reperfusion injury during open heart surgery compared with acyanotic ones. Clinically, when surgery is performed on cyanotic infants, cardiopulmonary bypass (CPB) is usually initiated at high PaO2, without consideration of possible cytotoxic effects of hyperoxia. The concept of “surgical reoxygenation injury of cyanotic myocardium” was proposed, wherein unintended abrupt reoxygenation of cyanotic myocardium at the onset of routine CPB causes oxygen-mediated injury, which may render the reoxygenated myocardium more susceptible to subsequent surgical ischemia/reperfusion injury and accentuates post-CPB myocardial dysfunction. The experimental studies using acute and chronic hypoxia models confirmed the role of reoxygenation injury mediated by reactive oxygen species in the pathogenesis of post-CPB myocardial dysfunction and addressed the importance of controlling PaO2 at the onset of CPB. The clinical relevance of this injury was shown by subsequent clinical studies, which demonstrated depleted antioxidant reserve capacity and troponin release during the initial reoxygenation on hyperoxic CPB prior to cardioplegic arrest. Furthermore recent randomized clinical trials verified that hyperoxic CPB provokes biochemical multi-organ damage including myocardium, lung, liver, and brain after open heart surgery in cyanotic patients, which can be successfully reduce by normoxic CPB management (i.e., reducing PaO2 at onset of CPB, gradual reoxygenation and controlled reoxygenation protocol). Based on these experimental and clinical studies, avoidance of using hyperoxic PaO2 on routine CPB is strongly recommended in the cyanotic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baker JE, Curry BD, Olinger GN, Gross GJ. Increased tolerance of the chronically hypoxic immature heart to ischemia-contribution of the KATP channel. Circulation. 1997;95:1278–85.

    Article  PubMed  CAS  Google Scholar 

  2. Silverman NA, Kohler J, Levitsky S, Pavel DG, Fang RB, Feinberg H. Chronic hypoxemia decreases global ventricular function and predisposes to the depletion of high-energy phosphates during cardiac arrest: implications for surgical repair of cyanotic congenital heart defects. Ann Thorac Surg. 1984;37:304–8.

    Article  PubMed  CAS  Google Scholar 

  3. Fujiwara T, Kurtts T, Anderson W, Heinle J, Mayer JE Jr. Myocardial protection in cyanotic neonatal lambs. J Thorac Cardiovasc Surg. 1988;96:700–10.

    PubMed  CAS  Google Scholar 

  4. Milano G, Corno AF, Samaja M, Morel S, Vassalli G, von Segesser LK. Daily reoxygenation decreases myocardial injury and improves post-ischemic recovery after chronic hypoxia. Eur J Cardio Thorac Surg. 2010;37:942–9.

    Article  Google Scholar 

  5. Corno AF, Milano G, Samaja M, Tozzi P, von Segesser LK. Chronic hypoxia: a model for cyanotic congenital heart defects. J Thorac Cardiovasc Surg. 2002;124:105–11.

    Article  PubMed  Google Scholar 

  6. del Nido PJ, Mickle DAG, Wilson GJ, Benson LN, Weisel RD, Coles JG, et al. Inadequate myocardial protection with cold cardioplegic arrest during repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 1988;95:223–9.

    PubMed  Google Scholar 

  7. Imura H, Caputo M, Parry A, Pawade A, Angelini GD, Suleiman MS. Age-dependent and hypoxia-related differences in myocardial protection during pediatric open heart surgery. Circulation. 2001;103:1551–6.

    Article  PubMed  CAS  Google Scholar 

  8. Najm HK, Wallen WJ, Belanger MP, Williams WG, Coles JG, Van Arsdell GS, et al. Does the degree of cyanosis affect myocardial adenosine triphosphatase levels and function in children undergoing surgical procedures for sqw congenital heart disease? J Thorac Cardiovasc Surg. 2000;119:515–24.

    Article  PubMed  CAS  Google Scholar 

  9. Cavarocchi NC, England MD, Schaff HV, Russo P, Orszulak TA, Schnell WA Jr, et al. Oxygen free radical generation during cardiopulmonary bypass: correlation with complement activation. Circulation 1986;74:III 130–3

    Google Scholar 

  10. Gauduel Y, Menasche P, Duvelleroy M. Enzyme release and mitochondrial activity in reoxygenated cardiac muscle: relationship with oxygen-induced lipid peroxidation. Gen Physiol Biophys. 1989;8:327–40.

    PubMed  CAS  Google Scholar 

  11. Boveris A. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol. 1977;78:61–82.

    Google Scholar 

  12. Buckberg GD. Studies of hypoxemic/reoxygenation injury: I. Linkage between cardiac function and oxidant damage. J Thorac Cardiovasc. 1995;110:1164–70.

    Article  CAS  Google Scholar 

  13. Teoh KH, Mickle DA, Weisel RD, Li RK, Tumiati LC, Coles JG, et al. Effect of oxygen tension and cardiovascular operations on the myocardial antioxidant enzyme activities in patients with tetralogy of Fallot and aorta-coronary bypass. J Thorac Cardiovasc Surg. 1992;104:159–64.

    PubMed  CAS  Google Scholar 

  14. Del Nido PJ, Mickle DAG, Wilson G, Benson LN, Coles JG, Trusler GA, et al. Evidence of myocardial free radical injury during elective repair of tetralogy of Fallot. Circulation. 1987;76:174–9.

    Google Scholar 

  15. Saker M, Mokhtari NS, Merzouk SA, Merzouk H, Belarbi B, Narce M. Oxidant and antioxidant status in mothers and their newborns according to birthweight. Eur J Obstet Gynecol Reprod Biol. 2008;141:95–9.

    Article  PubMed  CAS  Google Scholar 

  16. Loui A, Raab A, Maier RF, Bratter P, Obladen M. Trace elements and antioxidant enzymes in extremely low birthweight infants. J Trace Elem Med Biol. 2010;24:111–8.

    Article  PubMed  CAS  Google Scholar 

  17. Vento M, Sastre J, Asensi MA, Vina J. Room-air resuscitation causes less damage to heart and kidney than 100 % oxygen. Am J Respir Crit Care Med. 2005;172:1393–8.

    Article  PubMed  Google Scholar 

  18. Morita K, Ihnken K, Buckberg GD, Sherman MP, Young HH. Studies of hypoxemic/reoxygenation injury: without aortic cross clamping. IX. Importance of avoiding perioperative hyperoxemia in the setting of previous cyanosis. J Thorac Cardiovasc Surg. 1995;110:1235–44.

    Article  PubMed  CAS  Google Scholar 

  19. Morita K, Ihnken K, Buckberg GD. Studies of hypoxemic/reoxygenation injury: with aortic clamping. XII. Delay of cardiac reoxygenation damage in the presence of cyanosis: a new concept of controlled cardiac reoxygenation. J Thorac Cardiovasc Surg. 1995;110(4 Pt 2):1265–73.

    Google Scholar 

  20. Morita K, Ihnken K, Buckberg GD, Sherman MP, Young HH, Ignarro LJ. Role of controlled cardiac reoxygenation in reducing nitric oxide production and cardiac oxidant damage in cyanotic infantile hearts. J Clin Invest. 1994;93:2658–66.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang J, Jamieson WR, Sadeghi H, Gillespie K, Marier JR, Mickleson H, et al. Strategies of myocardial protection for operation in chronic model of cyanotic heart disease. Ann Thorac Surg. 1998;66:1507–13.

    Article  PubMed  CAS  Google Scholar 

  22. Allen BS, Rahman S, Ilbawi MN, Kronon M, Bolling KS, Halldorsson AO, et al. Detrimental effects of cardiopulmonary bypass in cyanotic infants: preventing the reoxygenation injury. Ann Thorac Surg. 1997;64:1381–8.

    Article  PubMed  CAS  Google Scholar 

  23. Bulutcu FS, Bayndir O, Polat B, Yalcin Y, öZbek U, Cakali E. Does normoxemic cardiopulmonary bypass prevent myocardial reoxygenation injury in cyanotic children? J Cardiothorac Vasc Anesth. 2002;16:330–3.

    Article  PubMed  Google Scholar 

  24. Modi P, Imura H, Caputo M, Pawade A, Parry A, Angelini GD, et al. Cardiopulmonary bypass-induced myocardial reoxygenation injury in pediatric patients with cyanosis. J Thorac Cardiovasc Surg. 2002;124:1035–6.

    Article  PubMed  CAS  Google Scholar 

  25. Aliakbar S, Brown PR, Bidwell D, Nicolaides KH. Human erythrocytes superoxide dismutase in adults, neonates and normal, hypoxaemic, anaemic and chromosomally abnormal fetuses. Clin Biochem. 1993;26:109–15.

    Article  PubMed  CAS  Google Scholar 

  26. Casado A, de la Torre R, Lopes-Fernandez ME. Copper/zinc superoxide dismutase activity in newborns and young people in Spain. Indian J Med Res. 2007;125:655–60.

    PubMed  CAS  Google Scholar 

  27. Toraman F, Evrenkaya S, Senay S, Karabulut H, Alhan C. Adjusting oxygen fraction to avoid hyperoxemia during cardiopulmonary bypass. Asian Cardiovasc Thorac Ann. 2007;15:313–6.

    Google Scholar 

  28. Zhu ZQ, Su ZK, Zhu DM. The role of graded reoxygenation with cardiopulmonary bypass in prevention of reoxygenation injury and its safety. Zhonghua Yi Xue Za Zhi. 2005;85(9):614–7.

    PubMed  CAS  Google Scholar 

  29. Siegmund B, Klietz T, Schwartz P, Piper HM. Temporary contractile blockade prevents hypercontracture in anoxic-reoxygenated cardiomyocytes. Am J Physiol Heart Circ Physiol. 1991;260:H426–35.

    CAS  Google Scholar 

  30. Caputo M, Mokhtari A, Rogers CA, Panayiotou N, Chen Q, Ghorbel MT, et al. The effects of normoxic versus hyperoxic cardiopulmonary bypass on oxidative stress and inflammatory response in cyanotic pediatric patients undergoing open cardiac surgery: a randomized controlled trial. J Thorac Cardiovasc Surg. 2009;138(1):206–14.

    Article  PubMed  CAS  Google Scholar 

  31. Jacobson RM, Feinstein AR. Oxygen as a cause of blindness in premature infants: “autopsy” of a decade of errors in clinical epidemiologic research. J Clin Epidemiol. 1992;45:1265–87.

    Article  PubMed  CAS  Google Scholar 

  32. Bandali KS, Belanger MP, Wittnichi C. Does hyperoxia affect glucose regulation and transport in the newborn? J Thorac Cardiovasc Surg. 2003;126:1730–5.

    Article  PubMed  CAS  Google Scholar 

  33. Joachimsson PO, Sjoberg F, Forsman M, Johansson M, Ahn HC, Rutberg H. Adverse effects of hyperoxemia during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1996;112:812.

    Article  PubMed  CAS  Google Scholar 

  34. Ihnken K, Winkler A, Schlensak C, Sarai K, Neidhart G, Unkelbach U, et al. Normoxic cardiopulmonary bypass reduces oxidative myocardial damage and nitric oxide during cardiac operations in the adult. J Thorac Cardiovasc Surg. 1998;116:327–34.

    Article  PubMed  CAS  Google Scholar 

  35. Abdel-Rahman U, Risteski P, Tizi K, Kerscher S, Behjati S, Zwicker K, et al. Hypoxic reoxygenation during initial reperfusion attenuates cardiac dysfunction and limits ischemia-reperfusion injury after cardioplegic arrest in a porcine model. J Thorac Cardiovasc Surg. 2009;137:978–82.

    Article  PubMed  CAS  Google Scholar 

  36. Abdel-Rahman U, Aybek T, Moritz A, Kleine P, Matheis G. Graded reoxygenation limits lipid peroxidation during surgical reperfusion. Med Sci Monit. 2003;9:CR389–91.

    PubMed  Google Scholar 

  37. Nollert G, Nagashima M, Bucerius J, Shin’oka T, Lidov HG, du Plessis A, et al. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1999;117:1172–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyozo Morita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, K. Surgical reoxygenation injury of the myocardium in cyanotic patients: clinical relevance and therapeutic strategies by normoxic management during cardiopulmonary bypass. Gen Thorac Cardiovasc Surg 60, 549–556 (2012). https://doi.org/10.1007/s11748-012-0115-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-012-0115-2

Keywords

Navigation