Skip to main content

Advertisement

Log in

An update on exercise-induced bronchoconstriction with and without asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Exercise-induced bronchoconstriction (EIB) is defined as transient, reversible bronchoconstriction that develops after strenuous exercise. It is a heterogeneous syndrome made up of a spectrum of phenotypes ranging from the asymptomatic military recruit whose condition is detected by diagnostic exercise challenge to the athlete with known asthma to the elite athlete for whom EIB represents an overuse or injury syndrome. If exercise is the only identified trigger for bronchoconstriction, it is called EIB. However, when it is associated with known asthma, then it is defined as EIB with asthma. This review discusses the pathogenesis, presentation, diagnosis, and management of EIB and EIB with asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Parsons JP, Mastronarde JG: Exercise-induced asthma. Curr Opin Pulm Med 2009, 15:25–28.

    Article  PubMed  Google Scholar 

  2. Goodman M, Hays S: Asthma and swimming: a metaanalysis. J Asthma 2008, 45:639–647.

    Article  PubMed  Google Scholar 

  3. Pedersen L, Lund TK, Barnes PJ, et al.: Airway responsiveness and inflammation in adolescent elite swimmers. J Allergy Clin Immunol 2008, 122:322–327.

    Article  PubMed  Google Scholar 

  4. Helenius I, Rytila P, Sarna S, et al.: Effect of continuing or finishing high-level sports on airway inflammation, bronchial hyperresponsiveness, and asthma: a 5-year prospective follow-up study of 42 highly trained swimmers. J Allergy Clin Immunol 2002, 109:962–968.

    Article  PubMed  Google Scholar 

  5. Molis WE, Bagniewski S, Weaver AL, et al.: Timeliness of diagnosis of asthma in children and its predictors. Allergy 2008, 63:1529–1535.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson SD: Exercise-induced asthma in children: a marker of airway inflammation. Med J Aust 2002, 177(Suppl):S61–S63.

    PubMed  Google Scholar 

  7. Cooper DM, Radom-Aizik S, Schwindt C, Zaldivar F Jr: Dangerous exercise: lessons learned from dysregulated inflammatory responses to physical activity. J Appl Physiol 2007, 103:700–709.

    Article  CAS  PubMed  Google Scholar 

  8. Buttner P, Mosig S, Lechtermann A, et al.: Exercise affects the gene expression profiles of human white blood cells. J Appl Physiol 2007, 102:26–36.

    Article  PubMed  CAS  Google Scholar 

  9. Tatham AS, Shewry PR: Allergy to wheat and related cereals. Clin Exp Allergy 2008, 38:1712–1726.

    CAS  PubMed  Google Scholar 

  10. Hull JH, Ansley L, Garrod R, Dickinson JW: Exercise-induced bronchoconstriction in athletes—should we screen? Med Sci Sports Exerc 2007, 39:2117–2124.

    Article  PubMed  Google Scholar 

  11. Rundell KW, Slee JB: Exercise and other indirect challenges to demonstrate asthma or exercise-induced broncho-constriction in athletes. J Allergy Clin Immunol 2008, 122:238–246; quiz 247–248.

    Article  PubMed  Google Scholar 

  12. Nystad W, Harris J, Borgen JS: Asthma and wheezing among Norwegian elite athletes. Med Sci Sports Exerc 2000, 32:266–270.

    Article  CAS  PubMed  Google Scholar 

  13. Carver TW Jr: Pediatric athletic asthmatics. Curr Allergy Asthma Rep 2008, 8:500–504.

    Article  PubMed  Google Scholar 

  14. Kukafka DS, Lang DM, Porter S, et al.: Exercise-induced bronchospasm in high school athletes via a free running test: incidence and epidemiology. Chest 1998, 114:1613–1622.

    Article  CAS  PubMed  Google Scholar 

  15. Storms WW, Joyner DM: Update on exercise-induced asthma: a report of the Olympic Exercise Asthma Summit Conference. Phys Sportsmed 1997, 25:45–55.

    CAS  PubMed  Google Scholar 

  16. Weiler JM, Bonini S, Coifman R, et al.: American Academy of Allergy, Asthma & Immunology Work Group report: exercise-induced asthma. J Allergy Clin Immunol 2007, 119:1349–1358.

    Article  PubMed  Google Scholar 

  17. Rupp NT, Brudno DS, Guill MF: The value of screening for risk of exercise-induced asthma in high school athletes. Ann Allergy 1993, 70:339–342.

    CAS  PubMed  Google Scholar 

  18. Nichols AW: Nonorthopaedic problems in the aquatic athlete. Clin Sports Med 1999, 18:395–411, viii.

    Article  CAS  PubMed  Google Scholar 

  19. Voy RO: The U.S. Olympic Committee experience with exercise-induced bronchospasm, 1984. Med Sci Sports Exerc 1986, 18:328–330.

    Article  CAS  PubMed  Google Scholar 

  20. Anderson SD, Kippelen P: Airway injury as a mechanism for exercise-induced bronchoconstriction in elite athletes. J Allergy Clin Immunol 2008, 122:225–235; quiz 236–237.

    Article  PubMed  Google Scholar 

  21. McFadden R: Exercise asthma. In Middleton’s Allergy: Principles and Practice, edn 7. Edited by Adkinson N, Busse W, Bochner B, et al. Philadelphia, PA: Mosby; 2008:1385–1393.

    Google Scholar 

  22. Hallstrand TS, Henderson WR Jr: Role of leukotrienes in exercise-induced bronchoconstriction. Curr Allergy Asthma Rep 2009, 9:18–25.

    Article  CAS  PubMed  Google Scholar 

  23. Sue-Chu M, Karjalainen EM, Laitinen A, et al.: Placebo-controlled study of inhaled budesonide on indices of airway inflammation in bronchoalveolar lavage fluid and bronchial biopsies in cross-country skiers. Respiration 2000, 67:417–425.

    Article  CAS  PubMed  Google Scholar 

  24. Hallstrand TS, Chi EY, Singer AG, et al.: Secreted phospholipase A2 group X overexpression in asthma and bronchial hyperresponsiveness. Am J Respir Crit Care Med 2007, 176:1072–1078.

    Article  CAS  PubMed  Google Scholar 

  25. Kang MJ, Lee SY, Kim HB, et al.: Association of IL-13 polymorphisms with leukotriene receptor antagonist drug responsiveness in Korean children with exercise-induced bronchoconstriction. Pharmacogenet Genomics 2008, 18:551–558.

    Article  CAS  PubMed  Google Scholar 

  26. Zietkowski Z, Bodzenta-Lukaszyk A, Tomasiak MM, et al.: Changes in RANTES and beta-thromboglobulin after intensive exercise in patients with allergic asthma. Int Arch Allergy Immunol 2009, 148:31–40.

    Article  CAS  PubMed  Google Scholar 

  27. Brannan JD, Gulliksson M, Anderson SD, et al.: Inhibition of mast cell PGD2 release protects against mannitol-induced airway narrowing. Eur Respir J 2006, 27:944–950.

    CAS  PubMed  Google Scholar 

  28. Wilson BA, Bar-Or O, O’Byrne PM: The effects of indomethacin on refractoriness following exercise both with and without a bronchoconstrictor response. Eur Respir J 1994, 7:2174–2178.

    Article  CAS  PubMed  Google Scholar 

  29. Anderson SD, Freed A: Exercise-induced bronchoconstriction: human models. In Asthma and Allergic Diseases, edn 2. Edited by Kay AB, Bousquet J, Holt PG, Kaplan AP. Philadelphia, PA: Blackwell Publishing; 2008:806–816.

    Google Scholar 

  30. McDonnell WF, Horstman DH, Hazucha MJ, et al.: Pulmonary effects of ozone exposure during exercise: dose-response characteristics. J Appl Physiol 1983, 54:1345–1352.

    CAS  PubMed  Google Scholar 

  31. Hazucha MJ, Folinsbee LJ, Bromberg PA: Distribution and reproducibility of spirometric response to ozone by gender and age. J Appl Physiol 2003, 95:1917–1925.

    CAS  PubMed  Google Scholar 

  32. Islam T, Berhane K, McConnell R, et al.: Glutathione-Stransferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children. Thorax 2009, 64:197–202.

    Article  CAS  PubMed  Google Scholar 

  33. Parsons JP, Kaeding C, Phillips G, et al.: Prevalence of exercise-induced bronchospasm in a cohort of varsity college athletes. Med Sci Sports Exerc 2007, 39:1487–1492.

    Article  PubMed  Google Scholar 

  34. Rundell KW: Pulmonary function decay in women ice hockey players: is there a relationship to ice rink air quality? Inhal Toxicol 2004, 16:117–123.

    Article  CAS  PubMed  Google Scholar 

  35. Rundell KW, Im J, Mayers LB, et al.: Self-reported symptoms and exercise-induced asthma in the elite athlete. Med Sci Sports Exerc 2001, 33:208–213.

    CAS  PubMed  Google Scholar 

  36. Haby MM, Anderson SD, Peat JK, et al.: An exercise challenge protocol for epidemiological studies of asthma in children: comparison with histamine challenge. Eur Respir J 1994, 7:43–49.

    Article  CAS  PubMed  Google Scholar 

  37. Haby MM, Peat JK, Mellis CM, et al.: An exercise challenge for epidemiological studies of childhood asthma: validity and repeatability. Eur Respir J 1995, 8:729–736.

    CAS  PubMed  Google Scholar 

  38. De Baets F, Bodart E, Dramaix W, et al.: Exercise-induced respiratory symptoms are poor predictors of bronchoconstriction. Pediatr Pulmonol 2005, 39:301–305.

    Article  PubMed  Google Scholar 

  39. Souza AC, Pereira CA: [Bronchial provocation tests using methacholine, cycle ergometer exercise and free running in children with intermittent asthma]. J Pediatr (Rio J) 2005, 81:65–72.

    Google Scholar 

  40. Malmberg LP, Makela MJ, Mattila PS, et al.: Exercise-induced changes in respiratory impedance in young wheezy children and nonatopic controls. Pediatr Pulmonol 2008, 43:538–544.

    Article  PubMed  Google Scholar 

  41. Mashalane MB, Stewart A, Feldman C, et al.: Prevalence of exercise-induced bronchospasm in Thokoza schoolchildren. S Afr Med J 2006, 96:67–70.

    CAS  PubMed  Google Scholar 

  42. Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol 2007, 120(5 Suppl):S94–S138.

    Google Scholar 

  43. National Asthma Education and Prevention Program: National Asthma Education and Prevention Program. Expert Panel Report: Guidelines for the Diagnosis and Management of Asthma Update on Selected Topics—2002. J Allergy Clin Immunol 2002, 110(5 Suppl):S141–S219.

    Google Scholar 

  44. Raissy HH, Harkins M, Kelly F, Kelly HW: Pretreatment with albuterol versus montelukast for exercise-induced bronchospasm in children. Pharmacotherapy 2008, 28:287–294.

    Article  CAS  PubMed  Google Scholar 

  45. Stelmach I, Grzelewski T, Majak P, et al.: Effect of different antiasthmatic treatments on exercise-induced bronchoconstriction in children with asthma. J Allergy Clin Immunol 2008, 121:383–389.

    Article  CAS  PubMed  Google Scholar 

  46. Philip G, Pearlman DS, Villaran C, et al.: Single-dose montelukast or salmeterol as protection against exercise-induced bronchoconstriction. Chest 2007, 132:875–883.

    Article  CAS  PubMed  Google Scholar 

  47. Storms W, Chervinsky P, Ghannam AF, et al.: A comparison of the effects of oral montelukast and inhaled salmeterol on response to rescue bronchodilation after challenge. Respir Med 2004, 98:1051–1062.

    Article  PubMed  Google Scholar 

  48. Kim J-H, Lee S-Y, Kim H-B, et al.: TBXA2R gene polymorphism and responsiveness to leukotriene receptor antagonist in children with asthma. Clin Exp Allergy 2007, 38:51–59.

    PubMed  Google Scholar 

  49. Milgrom H, Dockhorn RJ: Management of exercise-induced bronchospasm in children: role of long-acting beta2-adrenergic receptor agonists. Pediatr Asthma Allergy Immunol 2008, 21:59–72.

    Article  Google Scholar 

  50. Richter K, Janicki S, Jorres RA, Magnussen H: Acute protection against exercise-induced bronchoconstriction by formoterol, salmeterol and terbutaline. Eur Respir J 2002, 19:865–871.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Randolph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randolph, C. An update on exercise-induced bronchoconstriction with and without asthma. Curr Allergy Asthma Rep 9, 433–438 (2009). https://doi.org/10.1007/s11882-009-0064-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-009-0064-8

Keywords

Navigation