Elsevier

Medicina Intensiva

Volume 31, Issue 9, December 2007, Pages 491-501
Medicina Intensiva

Originales
PEEP alta frente a PEEP convencional en el síndrome de distrés respiratorio agudo. Revisión sistemática y metaanálisisHigh peep vs. conventional peep in the acute respiratory distress syndrome: a systematic review and meta-analysis

https://doi.org/10.1016/S0210-5691(07)74856-8Get rights and content

Objetivo

Evaluar, mediante revisión sistemática y metaanálisis, el efecto de presión positiva al final de la espiración (PEEP) alta frente PEEP convencional sobre la mortalidad y riesgo de barotraumas de los pacientes con síndrome de distress respiratorio agudo (SDRA).

Fuente de datos

Búsqueda electrónica en Medline, Embase, CINAHL, CANCERLIT, Pascal- Biomed, ACP Journal Club, biblioteca Cochrane (CDSR, DARE, CCTR), ISI Proceedings, Current Contents y Web of Science y búsqueda manual sobre las referencias seleccionadas.

Selección de estudios

Ensayos clínicos controlados aleatorizados publicados tras la NAECC (1994) que evaluaran el efecto de dos niveles de PEEP y que informaran sobre la mortalidad e incidencia de barotrauma.

Extracción de datos

Independiente por dos investigadores y las discrepancias se resuelven por consenso en el grupo. Se realizaron las tablas de contingencia y se obtuvieron los riesgos relativos (RR) con los intervalos de confianza (IC) de cada estudio.

Resultados

Se seleccionaron 4 artículos para el metaanálisis de mortalidad y 3 para el de barotrauma. No se encontró efecto de ninguno de los niveles de PEEP sobre la mortalidad (RR 0,73, IC 95%: 0,49 a 1,10) ni sobre la incidencia de barotraumas (RR 0,59, IC 95%: 0,14 a 1,73). Sin embargo, analizando los estudios en los que la PEEP se individualizó en función del punto de inflexion (Pflex), se objetiva una reducción significativa de la mortalidad (RR 0,59, IC 95%: 0,43 a 0,82) (p = 0,001).

Conclusiones

El empleo de PEEP alta o convencional en función de la oxigenación no afecta a la mortalidad o a la incidencia de barotrauma en pacientes con SDRA. Sin embargo, es posible que exista una reducción de la mortalidad asociada al empleo de PEEP alta individualizada en función de la mecánica pulmonar de cada paciente.

Objective

To perform a systematic review and meta-analysis of the literature to evaluate the effects of high PEEP versus conventional PEEP on mortality and on the risk of barotrauma in patients with the acute respiratory distress syndrome (ARDS).

Source of data

Computer search of Medline, Embase, CINAHL, CANCERLIT, Pascal-Biomed, ACP Journal Club, Cochrane library (CDSR, DARE, CCTR), ISI Proceedings, Current Contents,and Web of Science, as well as manual search of selected references.

Selection of studies

Controlled random clinical trials published after NAECC (1994) that evaluated the effect of two levels of PEEP and that reported the mortality and incidence of barotrauma in the series.

Data extraction

By two investigators working independently, with discrepancies resolved by group consensus. Contingency tables were elaborated and the RRs with corresponding confidence intervals were obtained for each study.

Results

Four articles were selected for the meta-analysis of mortality and three for the meta-analysis of barotrauma. No effects of PEEP level on mortality were found (RR 0.73, 95% CI: 0.49 to 1.10) or on the incidence of barotrauma (RR 0.50, 95% CI: 0.14 to 1.73). However, an analysis of the studies in which PEEP was individualized in function of Pflex showed a significant decrease in mortality (RR 0.59, 95% CI: 0.43 to 0.82) (p = 0.001)

Conclusions

The use of high or conventional PEEP in function of oxygenation does not affect mortality or the incidence of barotrauma in patients with ARDS. However, there might be a decrease in mortality associated to high PEEP individualized in function of the pulmonary mechanics of each patient.

Bibliografía (80)

  • D. Dreyfuss et al.

    High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure

    Am Rev Respir Dis

    (1988)
  • D.P. Carlton et al.

    Lung overexpansion increases pulmonary microvascular protein permeability in young lambs

    J Appl Physiol

    (1990)
  • L.A. Hernández et al.

    Chest wall restriction limits high airway pressure-induced lung injury in young rabbits

    J Appl Physiol

    (1989)
  • Y. Imai et al.

    Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation

    Am J Respir Crit Care Med

    (1994)
  • S. Chollet-Martin et al.

    Interactions between neutrophils and cytokines in blood and alveolar spaces during ARDS

    Am J Respir Crit Care Med

    (1996)
  • F. Gordo et al.

    Mechanical ventilation induced lung injury

    Med Intensiva

    (2007)
  • R. Pedreira et al.

    Inflammatory response and apoptosis in acute pulmonary injury

    Med Intensiva

    (2006)
  • A.S. Slutsky et al.

    Multiple system organ failure. Is mechanical ventilation a contributing factor?

    Am J Respir Crit Care Med

    (1998)
  • R.B. Goodman et al.

    Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome

    Am J Respir Crit Care Med

    (1996)
  • G.M. Matuschak et al.

    Liver-lung interactions following Escherichia coli bacteremic sepsis and secondary hepatic ischemia/reperfusion injury

    Am J Respir Crit Care Med

    (2001)
  • L. Tremblay et al.

    Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model

    J Clin Invest

    (1997)
  • S.J. Verbrugge et al.

    Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae inoculation

    Intensive Care Med

    (1998)
  • D.B. Murphy et al.

    Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin

    Am J Respir Crit Care Med

    (2000)
  • L.A. Hernández et al.

    Mechanical ventilation increases microvascular permeability in oleic acid-injured lungs

    J Appl Physiol

    (1990)
  • D. Chiumello et al.

    Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome

    Am J Respir Crit Care Med

    (1999)
  • A. Nahum et al.

    Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs

    Crit Care Med

    (1997)
  • Y. Imai et al.

    Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome

    JAMA

    (2003)
  • J.J. Marini et al.

    Ventilatory management of acute respiratory distress syndrome: a consensus of two

    Crit Care Med

    (2004)
  • M.B.P. Amato et al.

    Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome

    N Eng J Med

    (1998)
  • R.G. Brower et al.

    Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients

    Crit Care Med

    (1999)
  • L. Brochard et al.

    Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trial Group on Tidal Volume reduction in ARDS

    Am J Respir Crit Care Med

    (1998)
  • The Acute Respiratory Distress Syndrome Network

    N Engl J Med

    (2000)
  • N. Petrucci et al.

    Ventilation with lower tidal volumes versus traditional tidal volumes in adults for acute lung injury and acute respiratory distress syndrome

    Cochrane Database Syst Rev

    (2003)
  • N. Petrucci et al.

    Ventilation with smaller tidal volumes: a quantitative systematic review of randomized controlled trials

    Anesth Analg

    (2004)
  • P.Q. Eichacker et al.

    Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes

    Am J Respir Crit Care Med

    (2002)
  • L. Gattinoni et al.

    Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study

    Am Rev Respir Dis

    (1987)
  • L. Gattinoni et al.

    Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome

    JAMA

    (1993)
  • E. John et al.

    Effects of intermittent positive-pressure ventilation on lungs of normal rabbits

    Br J Exp Pathol

    (1980)
  • M.D. Eisner et al.

    Airway pressures and early barotrauma in patients with acute lung injury and acute respiratory distress syndrome

    Am J Respir Crit Care Med

    (2002)
  • M. Dambrosio et al.

    Right ventricular myocardial function in ARF patients. PEEP as a challenge for the right heart

    Intensive Care Med

    (1996)
  • Cited by (19)

    • OLA strategy for ARDS: Its effect on mortality depends on achieved recruitment (PaO<inf>2</inf>/FiO<inf>2</inf>) and mechanical power. Systematic review and meta-analysis with meta-regression

      2021, Medicina Intensiva
      Citation Excerpt :

      Another major source for heterogeneity relates to whether there is variation in the treatment benefit according to a patient's underlying risk of the event that the treatment is designed to decrease. We attempted to take a statistical approach39 to evaluate this, using MEM meta-regression to investigate the dependence of the treatment effect on a priori stated predictors in every trial. Each predictor represented a competitive hypothesis on the causal pathways of mortality through Ventilator Induced Lung Injury (VILI).

    View all citing articles on Scopus
    View full text