Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A component of innate immunity prevents bacterial biofilm development

Abstract

Antimicrobial factors form one arm of the innate immune system, which protects mucosal surfaces from bacterial infection1,2,3. These factors can rapidly kill bacteria deposited on mucosal surfaces and prevent acute invasive infections1,2,3,4. In many chronic infections, however, bacteria live in biofilms, which are distinct, matrix-encased communities specialized for surface persistence5,6,7. The transition from a free-living, independent existence to a biofilm lifestyle can be devastating, because biofilms notoriously resist killing by host defence mechanisms and antibiotics5,8. We hypothesized that the innate immune system possesses specific activity to protect against biofilm infections. Here we show that lactoferrin, a ubiquitous and abundant constituent of human external secretions, blocks biofilm development by the opportunistic pathogen Pseudomonas aeruginosa. This occurs at lactoferrin concentrations below those that kill or prevent growth. By chelating iron, lactoferrin stimulates twitching, a specialized form of surface motility, causing the bacteria to wander across the surface instead of forming cell clusters and biofilms. These findings reveal a specific anti-biofilm defence mechanism acting at a critical juncture in biofilm development, the time bacteria stop roaming as individuals and aggregate into durable communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth of P. aeruginosa in the presence of lactoferrin.
Figure 2: Confocal microscopic images of GFP-labelled P. aeruginosa in biofilm flow cells perfused with lactoferrin-free (ad) and lactoferrin-containing (20 µg ml-1) (eh) media.
Figure 3: Representations of bacterial behaviours.
Figure 4: Role of iron in twitching motility and biofilm development.
Figure 5: Effect of conalbumin on the antimicrobial susceptibility of P. aeruginosa biofilms to tobramycin (a) and H2O2 (b).

Similar content being viewed by others

References

  1. Coonrod, J. D. The role of extracellular bactericidal factors in pulmonary host defenses. Semin. Respir. Infect. 1, 118–129 (1986)

    CAS  PubMed  Google Scholar 

  2. Cole, A. M., Dewan, P. & Ganz, T. Innate antimicrobial activity of nasal secretions. Infect. Immun. 67, 3267–3275 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ganz, T. Antimicrobial proteins and peptides in host defense. Semin. Respir. Infect. 16, 4–10 (2001)

    Article  CAS  Google Scholar 

  4. Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Hoiby, N. et al. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect. 3, 23–35 (2001)

    Article  CAS  Google Scholar 

  7. Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Xu, K. D., McFeters, G. A. & Stewart, P. S. Biofilm resistance to antimicrobial agents. Microbiology 146, 547–549 (2000)

    Article  CAS  Google Scholar 

  9. Burns, J. L., Ramsey, B. W. & Smith, A. L. Clinical manifestations and treatment of pulmonary infections in cystic fibrosis. Adv. Pediatr. Infect. Dis. 8, 53–66 (1993)

    CAS  PubMed  Google Scholar 

  10. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Ward, C. G., Bullen, J. J. & Rogers, H. J. Iron and infection: new developments and their implications. J. Trauma 41, 356–364 (1996)

    Article  CAS  Google Scholar 

  12. Abe, T., Nakajima, A., Matsunaga, M., Sakuragi, S. & Komatsu, M. Decreased tear lactoferrin concentration in patients with chronic hepatitis C. Br. J. Ophthalmol. 83, 684–687 (1999)

    Article  CAS  Google Scholar 

  13. Harbitz, O., Jenssen, A. O. & Smidsrod, O. Lysozyme and lactoferrin in sputum from patients with chronic obstructive lung disease. Eur. J. Respir. Dis. 65, 512–520 (1984)

    CAS  PubMed  Google Scholar 

  14. Thompson, A. B., Bohling, T., Payvandi, F. & Rennard, S. I. Lower respiratory tract lactoferrin and lysozyme arise primarily in the airways and are elevated in association with chronic bronchitis. J. Lab. Clin. Med. 115, 148–158 (1990)

    CAS  PubMed  Google Scholar 

  15. Hirai, Y. et al. Concentrations of lactoferrin and iron in human milk at different stages of lactation. J. Nutr. Sci. Vitaminol. (Tokyo) 36, 531–544 (1990)

    Article  CAS  Google Scholar 

  16. Samson, R. R., Mirtle, C. & McClelland, D. B. Secretory IgA does not enhance the bacteriostatic effects of iron-binding or vitamin B12-binding proteins in human colostrum. Immunology 38, 367–373 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sohnle, P. G., Collins-Lech, C. & Wiessner, J. H. The zinc-reversible antimicrobial activity of neutrophil lysates and abscess fluid supernatants. J. Infect. Dis. 164, 137–142 (1991)

    Article  CAS  Google Scholar 

  18. Ellison, R. T. III The effects of lactoferrin on Gram-negative bacteria. Adv. Exp. Med. Biol. 357, 71–90 (1994)

    Article  CAS  Google Scholar 

  19. Leitch, E. C. & Willcox, M. D. Lactoferrin increases the susceptibility of S. epidermidis biofilms to lysozyme and vancomycin. Curr. Eye Res. 19, 12–19 (1999)

    Article  CAS  Google Scholar 

  20. Kolter, R. & Losick, R. One for all and all for one. Science 280, 226–227 (1998)

    Article  CAS  Google Scholar 

  21. Tolker-Nielsen, T. et al. Development and dynamics of Pseudomonas sp. biofilms. J. Bacteriol. 182, 6482–6489 (2000)

    Article  CAS  Google Scholar 

  22. Keberle, H. The biochemistry of deferrioxamine and its relation to iron metabolism. Ann. NY Acad. Sci. 119, 758–768 (1964)

    Article  ADS  CAS  Google Scholar 

  23. Xiao, R. & Kisaalita, W. S. Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin. Microbiology 143, 2509–2515 (1997)

    Article  CAS  Google Scholar 

  24. Martin, P. R., Watson, A. A., McCaul, T. F. & Mattick, J. S. Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol. 16, 497–508 (1995)

    Article  CAS  Google Scholar 

  25. Britigan, B. E., Hayek, M. B., Doebbeling, B. N. & Fick, R. B. J. Transferrin and lactoferrin undergo proteolytic cleavage in the Pseudomonas aeruginosa-infected lungs of patients with cystic fibrosis. Infect. Immun. 61, 5049–5055 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Stites, S. W., Plautz, M. W., Bailey, K., O'Brien-Ladner, A. R. & Wesselius, L. J. Increased concentrations of iron and isoferritins in the lower respiratory tract of patients with stable cystic fibrosis. Am. J. Respir. Crit. Care Med. 160, 796–801 (1999)

    Article  CAS  Google Scholar 

  27. Stites, S. W., Walters, B., O'Brien-Ladner, A. R., Bailey, K. & Wesselius, L. J. Increased iron and ferritin content of sputum from patients with cystic fibrosis or chronic bronchitis. Chest 114, 814–819 (1998)

    Article  CAS  Google Scholar 

  28. Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Hentzer, M. et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 183, 5395–5401 (2001)

    Article  CAS  Google Scholar 

  30. O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Brutinel, T. Moninger and M. Neville for technical assistance, J. Kato of Hiroshima University for the twitching mutant, A. Berger for advice on data analysis, and our laboratory colleagues for discussions. This research was supported by the Howard Hughes Medical Institute, the National Heart, Lung and Blood Institute, the National Institute of General Medical Science, the Cystic Fibrosis Foundation, and the W. M. Keck Foundation Microbial Communities and Cell Signaling Laboratory. P.K.S. is the recipient of a NIH Mentored Physician Scientist Award, and a Cystic Fibrosis Foundation Leroy Matthews Award. M.J.W. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Singh.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Parsek, M., Greenberg, E. et al. A component of innate immunity prevents bacterial biofilm development. Nature 417, 552–555 (2002). https://doi.org/10.1038/417552a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417552a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing