Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

A practical guide to neonatal volume guarantee ventilation

Abstract

A recent systematic review and meta-analysis shows that volume-targeted ventilation (VTV) compared with pressure-limited ventilation (PLV) reduce death and bronchopulmonary dysplasia, pneumothorax, hypocarbia and severe cranial ultrasound abnormalities. In this paper, we present published research and our experience with volume guarantee (VG) ventilation, a VTV mode available on the Dräger Babylog 8000plus and VN500 ventilators. The VG algorithm measures the expired tidal volume (VT) for each inflation and adjusts the peak inflating pressure for the next inflation to deliver a VT set by the clinician. The advantage of controlling expired VT is that this is less influenced by endotracheal tube leak than inspired VT. VG ventilation can be used with an endotracheal tube leak up to 50%. Initial set VT for infants with respiratory distress syndrome should be 4.0 to 5.0 ml kg−1. The set VT should be adjusted to maintain normocapnoea. Setting the peak inflating pressure limit well above the working pressure is important to enable the ventilator to deliver the set VT, and to avoid frequent alarms. This paper provides a practical guide on how to use VG ventilation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Keszler M, Abubakar K . Volume guarantee: stability of tidal volume and incidence of hypocarbia. Pediatr Pulmonol 2004; 38: 240–245.

    Article  Google Scholar 

  2. Swamy R, Gupta S, Singh J, Donn SM, Sinha SK . Tidal volume delivery and peak inspiratory pressure in babies receiving volume targeted or time cycled, pressure limited ventilation: a randomized controlled trial. J Neonatal-Perinatal Med 2008; 2: 239–243.

    Google Scholar 

  3. Hernandez LA, Peevy KJ, Moise AA, Parker JC . Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 1989; 66: 2364–2368.

    Article  CAS  Google Scholar 

  4. Bjorklund LJ, Ingimarsson J, Curstedt T, John J, Robertson B, Werner O et al. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res 1997; 42: 348–355.

    Article  CAS  Google Scholar 

  5. Clark RH, Gerstmann DR, Jobe AH, Moffitt ST, Slutsky AS, Yoder BA . Lung injury in neonates: causes, strategies for prevention, and long-term consequences. J Pediatr 2001; 139: 478–486.

    Article  CAS  Google Scholar 

  6. Sharma A, Milner AD, Greenough A . Performance of neonatal ventilators in volume targeted ventilation mode. Acta Paediatr 2007; 96: 176–180.

    Article  Google Scholar 

  7. Jaecklin T, Morel DR, Rimensberger PC . Volume-targeted modes of modern neonatal ventilators: how stable is the delivered tidal volume? Intensive Care Med 2007; 33: 326–335.

    Article  Google Scholar 

  8. Cappa P, Sciuto SA, Silvestri S . Experimental evaluation of errors in the measurement of respiratory parameters of the newborn performed by a continuous flow neonatal ventilator. J Med Eng Technol 2006; 30: 31–40.

    Article  CAS  Google Scholar 

  9. Chow LC, Vanderhal A, Raber J, Sola A . Are tidal volume measurements in neonatal pressure-controlled ventilation accurate? Pediatr Pulmonol 2002; 34: 196–202.

    Article  Google Scholar 

  10. van Kaam AH, Rimensberger PC, Borensztajn D, De Jaegere AP . Ventilation practices in the neonatal intensive care unit: a cross-sectional study. J Pediatr 2010; 157: 767–771.

    Article  Google Scholar 

  11. Klingenberg C, Wheeler KI, Owen LS, Kaaresen PI, Davis PG . An international survey of volume-targeted neonatal ventilation. Arch Dis Child Fetal Neonatal Ed 2011; 96: F146–F148.

    Article  Google Scholar 

  12. Wheeler K, Klingenberg C, McCallion N, Morley CJ, Davis PG . Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst Rev 2010; 11: CD003666.

    Google Scholar 

  13. Wheeler K, Klingenberg C, Morley CJ, Davis PG . Volume-targeted versus pressure-limited ventilation for preterm infants: a systematic review and meta-analysis. Neonatology 2011; 100: 219–227.

    Article  Google Scholar 

  14. McCallion N, Lau R, Morley CJ, Dargaville PA . Neonatal volume guarantee ventilation: effects of spontaneous breathing, triggered and untriggered inflations. Arch Dis Child Fetal Neonatal Ed 2008; 93: F36–F39.

    Article  CAS  Google Scholar 

  15. McCallion N, Lau R, Dargaville PA, Morley CJ . Volume guarantee ventilation, interrupted expiration, and expiratory braking. Arch Dis Child 2005; 90: 865–870.

    Article  CAS  Google Scholar 

  16. Wheeler KI, Davis PG, Kamlin CO, Morley CJ . Assist control volume guarantee ventilation during surfactant administration. Arch Dis Child Fetal Neonatal Ed 2009; 94: F336–F338.

    Article  CAS  Google Scholar 

  17. Wheeler KI, Morley CJ, Kamlin CO, Davis PG . Volume-guarantee ventilation: pressure may decrease during obstructed flow. Arch Dis Child Fetal Neonatal Ed 2009; 94: F84–F86.

    Article  CAS  Google Scholar 

  18. Wheeler KI, Wong C, Morley CJ, Davis PG . Volume guarantee ventilation: how low should we go? J Paediatr Child Health 2011; 47 (Suppl. 1): 60–116. Abstract nr.

    Google Scholar 

  19. Wheeler KI, Wong C, Morley CJ, Davis PG . Selecting the PIP limit for infants ventilated using assist control Volume Guarantee mode. J Paediatr Child Health 2011; 47 (Suppl. 1): 60–116. Abstract nr.

    Google Scholar 

  20. Wheeler KI, Wong C, Morley CJ, Davis PG . Selecting the circuit flow for infants ventilated using assist control Volume Guarantee. J Paediatr Child Health 2010; 46 (Suppl. 1): 7–55.

    Google Scholar 

  21. Cheema IU, Sinha AK, Kempley ST, Ahluwalia JS . Impact of volume guarantee ventilation on arterial carbon dioxide tension in newborn infants: a randomised controlled trial. Early Hum Dev 2007; 83: 183–189.

    Article  CAS  Google Scholar 

  22. Dawson C, Davies MW . Volume-targeted ventilation and arterial carbon dioxide in neonates. J Paediatr Child Health 2005; 41: 518–521.

    Article  Google Scholar 

  23. Erickson SJ, Grauaug A, Gurrin L, Swaminathan M . Hypocarbia in the ventilated preterm infant and its effect on intraventricular haemorrhage and bronchopulmonary dysplasia. J Paediatr Child Health 2002; 38: 560–562.

    Article  CAS  Google Scholar 

  24. Fritz KI, Delivoria-Papadopoulos M . Mechanisms of injury to the newborn brain. Clin Perinatol 2006; 33: 573–591.

    Article  Google Scholar 

  25. Lista G, Castoldi F, Fontana P, Reali R, Reggiani A, Bianchi S et al. Lung inflammation in preterm infants with respiratory distress syndrome: effects of ventilation with different tidal volumes. Pediatr Pulmonol 2006; 41: 357–363.

    Article  Google Scholar 

  26. Herrera CM, Gerhardt T, Claure N, Everett R, Musante G, Thomas C et al. Effects of volume-guaranteed synchronized intermittent mandatory ventilation in preterm infants recovering from respiratory failure. Pediatrics 2002; 110: 529–533.

    Article  Google Scholar 

  27. Keszler M, Abubakar KM . Volume guarantee ventilation. Clin Perinatol 2007; 34: 107–116.

    Article  Google Scholar 

  28. Abubakar K, Keszler M . Effect of volume guarantee combined with assist/control vs synchronized intermittent mandatory ventilation. J Perinatol 2005; 25: 638–642.

    Article  Google Scholar 

  29. Sandberg K, Sjoqvist BA, Hjalmarson O, Olsson T . Analysis of alveolar ventilation in the newborn. Arch Dis Child 1984; 59: 542–547.

    Article  CAS  Google Scholar 

  30. Milner AD, Vyas H, Hopkin IE . Efficacy of facemask resuscitation at birth. Br Med J (Clin Res Ed) 1984; 289: 1563–1565.

    Article  CAS  Google Scholar 

  31. te Pas AB, Davis PG, Kamlin CO, Dawson J, O’Donnell CP, Morley CJ . Spontaneous breathing patterns of very preterm infants treated with continuous positive airway pressure at birth. Pediatr Res 2008; 64: 281–285.

    Article  Google Scholar 

  32. Vilstrup CT, Bjorklund LJ, Werner O, Larsson A . Lung volumes and pressure-volume relations of the respiratory system in small ventilated neonates with severe respiratory distress syndrome. Pediatr Res 1996; 39: 127–133.

    Article  CAS  Google Scholar 

  33. van Kaam AH, Rimensberger PC . Lung-protective ventilation strategies in neonatology: what do we know--what do we need to know? Crit Care Med 2007; 35: 925–931.

    Article  Google Scholar 

  34. Keszler M, Nassabeh-Montazami S, Abubakar K . Evolution of tidal volume requirement during the first 3 weeks of life in infants <800 g ventilated with Volume Guarantee. Arch Dis Child Fetal Neonatal Ed 2009; 94: F279–F282.

    Article  CAS  Google Scholar 

  35. Nassabeh-Montazami S, Abubakar KM, Keszler M . The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant. Pediatr Pulmonol 2009; 44: 128–133.

    Article  Google Scholar 

  36. Bhutani VK, Ritchie WG, Shaffer TH . Acquired tracheomegaly in very preterm neonates. Am J Dis Child 1986; 140: 449–452.

    CAS  PubMed  Google Scholar 

  37. Sharma S, Abubakar K, Keszler M . Tidal Volume in Infants with Congenital Diaphragmatic Hernia. Pediatric Academic Society (PAS), Vancouver, Canada, 2010. Abstract 1466.146.

    Google Scholar 

  38. te Pas AB, Kamlin CO, Dawson JA, O’Donnell C, Sokol J, Stewart M et al. Ventilation and spontaneous breathing at birth of infants with congenital diaphragmatic hernia. J Pediatr 2009; 154: 369–373.

    Article  Google Scholar 

  39. Kiraly NJ, Tingay DG, Mills JF, Dargaville PA, Copnell B . Volume not guaranteed: closed endotracheal suction compromises ventilation in volume-targeted mode. Neonatology 2011; 99: 78–82.

    Article  Google Scholar 

  40. Schulze A . Respiratory gas conditioning and humidification. Clin Perinatol 2007; 34: 19–33.

    Article  Google Scholar 

  41. Deakins K, Di Fiore J . Evaluation of Condensation in Three Commercially Available Heated Wire Ventilator Circuits. American Association of Respiratory Care: San Antonio, Texas, USA, 2005. Abstract.

    Google Scholar 

  42. Beck J, Reilly M, Grasselli G, Mirabella L, Slutsky AS, Dunn MS et al. Patient-ventilator interaction during neurally adjusted ventilatory assist in low birth weight infants. Pediatr Res 2009; 65: 663–668.

    Article  Google Scholar 

  43. South M, Morley CJ . Respiratory timing in intubated neonates with respiratory distress syndrome. Arch Dis Child 1992; 67: 446–448.

    Article  CAS  Google Scholar 

  44. Hird M, Greenough A . Inflation time in mechanical ventilation of preterm neonates. Eur J Pediatr 1991; 150: 440–443.

    Article  CAS  Google Scholar 

  45. Wheeler KI, Morley CJ, Hooper SB, Davis PG . Lower back-up rates improve ventilator triggering during assist-control ventilation: a randomized crossover trial. J Perinatol 2 Jun 2011 (e-pub ahead of print).

  46. Greenough A . The premature infant's respiratory response to mechanical ventilation. Early Hum Dev 1988; 17: 1–5.

    Article  CAS  Google Scholar 

  47. Bach KP, Kuschel CA, Oliver MH, Bloomfield FH . Ventilator gas flow rates affect inspiratory time and ventilator efficiency index in term lambs. Neonatology 2009; 96: 259–264.

    Article  Google Scholar 

  48. Monkman S, Kirpalani H . PEEP--a ‘cheap’ and effective lung protection. Paediatr Respir Rev 2003; 4: 15–20.

    Article  Google Scholar 

  49. Monkman SL, Andersen CC, Nahmias C, Ghaffer H, Bourgeois JM, Roberts RS et al. Positive end-expiratory pressure above lower inflection point minimizes influx of activated neutrophils into lung. Crit Care Med 2004; 32: 2471–2475.

    Article  Google Scholar 

  50. Keszler M . State of the art in conventional mechanical ventilation. J Perinatol 2009; 29: 262–275.

    Article  CAS  Google Scholar 

  51. Otto CM, Markstaller K, Kajikawa O, Karmrodt J, Syring RS, Pfeiffer B et al. Spatial and temporal heterogeneity of ventilator-associated lung injury after surfactant depletion. J Appl Physiol 2008; 104: 1485–1494.

    Article  Google Scholar 

  52. Kamlin CO, Davis PG, Morley CJ . Predicting successful extubation of very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 2006; 91: F180–F183.

    Article  CAS  Google Scholar 

  53. Greenough A, Milner AD . Pulmonary disease of the newborn: acute respiratory disease. In: Rennie JM (ed). Roberton's Textbook of Neonatology. 4th edn. London, England: Elsevier, 2005 pp 468–553.

    Google Scholar 

  54. te Pas AB, Wong C, Kamlin CO, Dawson JA, Morley CJ, Davis PG . Breathing patterns in preterm and term infants immediately after birth. Pediatr Res 2009; 65: 352–356.

    Article  Google Scholar 

  55. Hummler HD, Engelmann A, Pohlandt F, Franz AR . Volume-controlled intermittent mandatory ventilation in preterm infants with hypoxemic episodes. Intensive Care Med 2006; 32: 577–584.

    Article  Google Scholar 

  56. Polimeni V, Claure N, D’Ugard C, Bancalari E . Effects of volume-targeted synchronized intermittent mandatory ventilation on spontaneous episodes of hypoxemia in preterm infants. Biol Neonate 2006; 89: 50–55.

    Article  Google Scholar 

Download references

Acknowledgements

Dr Wheeler is supported in part by a Monash University International Postgraduate Research Scholarship. Professor Davis is supported in part by an Australian National Health and Medical Research Council Practitioner Fellowship. The research has been supported by Australian NHMRC grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Klingenberg.

Ethics declarations

Competing interests

Colin Morley has been a consultant to Dräger Medical. Dräger Medical has not contributed any financial support for this manuscript or had any part in the authorship, although they have checked the manuscript for errors of fact. Dräger Medical has assisted the authors with technical information involving different research projects some of which have been included in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingenberg, C., Wheeler, K., Davis, P. et al. A practical guide to neonatal volume guarantee ventilation. J Perinatol 31, 575–585 (2011). https://doi.org/10.1038/jp.2011.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2011.98

Keywords

Search

Quick links