Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New drugs for asthma

Key Points

  • Asthma is one of the major growth areas in therapeutics and many new drugs are currently in development.

  • These drugs include improvements of existing classes of drugs, notably once-daily inhaled β2 adrenoceptor agonists and corticosteroids with an improved safety profile.

  • New classes of drug are based on a better understanding of the complex pathophysiology of asthma and include inhibitors of specific mediators, cytokines and chemokines.

  • Several new classes of drug are targeted at signal-transduction pathways and transcription factors that regulate the expression of inflammatory genes and the immune mechanisms that underlie allergic inflammation.

  • A major challenge is to develop drugs that are as effective as existing inhaled treatments and are effective by oral administration, but without significant side effects.

  • No treatments are curative, but it is possible that in the future vaccination approaches and immunoregulators could provide long-term control of asthma.

Abstract

Asthma is a major and increasing global health problem and, despite major advances in therapy, many patients' symptoms are not adequately controlled. Treatment with combination inhalers, which contain a corticosteroid and long-acting β2 adrenoceptor agonist, is the most effective current therapy. There is therefore a search for new therapies, particularly safe and effective oral treatments and those that are more efficacious in severe asthma. New therapies in development include mediator antagonists and inhibitors of cytokines, although these therapies might be too specific to be very effective. New anti-inflammatory therapies include corticosteroids and inhibitors of phosphodiesterase-4, p38 mitogen-activated protein kinase and nuclear factor-κB. The prospects for a curative treatment are on the horizon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pathophysiology of asthma.
Figure 2: Molecular mechanisms of action of bronchodilators.
Figure 3: There are several strategies for inhibiting pro-inflammatory cytokines in asthma.
Figure 4: Inhibition of eosinophilic inflammation.
Figure 5: Effects of blocking interleukin-13 in asthma.
Figure 6: Chemokine receptor antagonists in asthma.
Figure 7: Phosphodiesterase-4 inhibitors have a broad spectrum of anti-inflammatory effects in asthma.
Figure 8: Strategies to inhibit the allergic response underlying asthma.

Similar content being viewed by others

References

  1. Weiss, K. B. & Sullivan, S. D. The health economics of asthma and rhinitis. I. Assessing the economic impact. J. Allergy Clin. Immunol. 107, 3–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Tattersfield, A. E., Knox, A. J., Britton, J. R. & Hall, I. P. Asthma. Lancet 360, 1313–1322 (2002). A good overview of the pathophysiology and clinical features of asthma.

    Article  CAS  PubMed  Google Scholar 

  3. Barnes, P. J. Pathophysiology of asthma. Eur. Respir. Mon. 8, 84–113 (2003).

    Google Scholar 

  4. Payne, D. N. et al. Early thickening of the reticular basement membrane in children with difficult asthma. Am. J. Respir. Crit. Care Med. 167, 78–82 (2003).

    Article  PubMed  Google Scholar 

  5. Barnes, P. J., Pedersen, S. & Busse, W. W. Efficacy and safety of inhaled corticosteroids: an update. Am. J. Respir. Crit. Care Med. 157, S1–S53 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Lipworth, B. J. Systemic adverse effects of inhaled corticosteroid therapy: A systematic review and meta-analysis. Arch. Intern. Med. 159, 941–955 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Brattsand, R. & Axelsson, B. New Drugs for Asthma Vol. 2 (ed. Barnes, P. J.) 192–207 (IBC Technical Services Ltd, London, 1992).

    Google Scholar 

  8. Reynolds, N. A. & Scott, L. J. Ciclesonide. Drugs 64, 511–519 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Taylor, D. A. et al. A dose-dependent effect of the novel inhaled corticosteroid ciclesonide on airway responsiveness to adenosine-5'-monophosphate in asthmatic patients. Am. J. Respir. Crit. Care Med. 160, 237–243 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Barnes, P. J. & Adcock, I. M. How do corticosteroids work in asthma? Ann. Intern. Med. 139, 359–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Schacke, H. et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc. Natl Acad. Sci. USA 101, 227–232 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. Heck, S. et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 13, 4087–4095 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adcock, I. M., Nasuhara, Y., Stevens, D. A. & Barnes, P. J. Ligand-induced differentiation of glucocorticoid receptor trans-repression and transactivation: preferential targetting of NF-κB and lack of I-κB involvement. Br. J. Pharmacol. 127, 1003–1011 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vayssiere, B. M. et al. Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol. Endocrinol. 11, 1245–1255 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Belvisi, M. G. et al. Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity. J. Immunol. 166, 1975–1982 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Bledsoe, R. K. et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110, 93–105 (2002). The resolution of the crystal structure for the glucocorticoid-binding site of the glucocorticoid receptor reveals pockets that could allow the design of novel corticosteroids.

    Article  CAS  PubMed  Google Scholar 

  17. Barnes, P. J. & Dixon, C. M. S. The effect of inhaled vasoactive intestinal peptide on bronchial hyperreactivity in man. Am. Rev. Respir. Dis. 130, 162–166 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Linden, A. et al. Bronchodilation by an inhaled VPAC2 receptor agonist in patients with stable asthma. Thorax 58, 217–221 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Angus, R. M., Millar, E. A., Chalmers, G. W. & Thomson, N. C. Effect of inhaled atrial natriuretic peptide and a neutral endopeptidase inhibitor on histamine-induced bronchoconstriction. Am. J. Respir. Crit. Care Med. 151, 2003–2005 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Fluge, T. et al. Bronchodilation using combined urodilatin–albuterol administration in asthma: a randomized, double-blind, placebo-controlled trial. Eur. J. Med. Res. 4, 411–415 (1999).

    CAS  PubMed  Google Scholar 

  21. Kidney, J. C. et al. Effect of an oral potassium channel activator BRL 38227 on airway function and responsiveness in asthmatic patients: comparison with oral salbutamol. Thorax 48, 130–134 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fox, A. J., Barnes, P. J., Venkatesan, P. & Belvisi, M. G. Activation of large conductance potassium channels inhibits the afferent and efferent function of airway sensory nerves. J. Clin. Invest. 99, 513–519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lordan, J. L. & Holgate, S. T. H1-antihistamines in asthma. Clin. Allergy Immunol. 17, 221–248 (2002).

    CAS  PubMed  Google Scholar 

  24. Hofstra, C. L., Desai, P. J., Thurmond, R. L. & Fung-Leung, W. P. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J. Pharmacol. Exp. Ther. 305, 1212–1221 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Thurmond, R. L. et al. A Potent and Selective Histamine H4 Receptor Antagonist with Anti-inflammatory Properties. J. Pharmacol. Exp. Ther. (2004).

  26. Drazen, J. M., Israel, E. & O'Byrne, P. M. Treatment of asthma with drugs modifying the leukotriene pathway. N. Engl. J. Med. 340, 197–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Barnes, P. J. Anti-leukotrienes: here to stay? Curr. Opin. Pharmacol. 3, 257–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Back, M. Functional characteristics of cysteinyl-leukotriene receptor subtypes. Life Sci. 71, 611–622 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Evans, D. J. et al. The effect of a leukotriene B4 antagonist LY293111 on allergen- induced responses in asthma. Thorax 51, 1178–1184 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nasser, S. M. S. et al. Effect of the 5-lipoxygenase inhibitor ZD2138 on allergen-induced early and late responses. Thorax 49, 743–748 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsuoka, T. et al. Prostaglandin D2 as a mediator of allergic asthma. Science 287, 2013–2017 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Hirai, H. et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med. 193, 255–261 (2001). The discovery that PD 2 is the endogenous agonist of the chemotactic receptor described on T H 2 cells (CRTH2) has focussed attention on PGD 2 as a target for asthma therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Benigni, A. & Remuzzi, G. Endothelin antagonists. Lancet 353, 133–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Kharitonov, S. A. & Barnes, P. J. Exhaled markers of pulmonary disease. Am. J. Respir. Crit. Care Med. 163, 1693–1772 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Saleh, D., Ernst, P., Lim, S., Barnes, P. J. & Giaid, A. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB J. 12, 929–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Guo, F. H. et al. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. J. Immunol. 164, 5970–5980 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Hansel, T. T. et al. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J. 17, 1298–1300 (2003). The first clinical study of a selective inhibitor of inducible nitric oxide synthase shows a marked reduction in exhaled nitric oxide concentrations.

    Article  CAS  PubMed  Google Scholar 

  38. Fozard, J. R. & McCarthy, C. Adenosine receptor ligands as potential therapeutics in asthma. Curr. Opin. Investig. Drugs 3, 69–77 (2002). A good review of the potential for adenosine agonists and antagonists in asthma.

    CAS  PubMed  Google Scholar 

  39. Yukawa, T. et al. Effect of theophylline and adenosine on eosinophil function. Am. Rev. Respir. Dis. 140, 327–333 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Fozard, J. R., Ellis, K. M., Villela Dantas, M. F., Tigani, B. & Mazzoni, L. Effects of CGS 21680, a selective adenosine A2A receptor agonist, on allergic airways inflammation in the rat. Eur. J. Pharmacol. 438, 183–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Mohanty, J. G., Raible, D. G., McDermott, L. J., Pelleg, A. & Schulman, E. S. Effects of purine and pyrimidine nucleotides on intracellular Ca2+ in human eosinophils: activation of purinergic P2Y receptors. J. Allergy Clin. Immunol. 107, 849–855 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Schulman, E. S. et al. ATP modulates anti-IgE-induced release of histamine from human lung mast cells. Am. J. Respir Cell. Mol. Biol. 20, 530–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. He, S. & Walls, A. F. Human mast cell tryptase: a stimulus of microvascular leakage and mast cell activation. Eur. J. Pharmacol. 328, 89–97 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Knight, D. A. et al. Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma. J. Allergy Clin. Immunol. 108, 797–803 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Clark, J. M. et al. Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep. Am. J. Respir. Crit. Care Med. 152, 2076–2083 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Krishna, M. T. et al. Inhibition of mast cell tryptase by inhaled APC 366 attenuates allergen-induced late-phase airway obstruction in asthma. J. Allergy Clin. Immunol. 107, 1039–1045 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Newhouse, B. J. Tryptase inhibitors — review of the recent patent literature. IDrugs. 5, 682–688 (2002).

    CAS  PubMed  Google Scholar 

  48. Slusarchyk, W. A. et al. Synthesis of potent and highly selective inhibitors of human tryptase. Bioorg. Med. Chem. Lett. 12, 3235–3238 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Barnes, P. J. & Lim, S. Inhibitory cytokines in asthma. Mol. Med. Today 4, 452–458 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Barnes, P. J. Endogenous inhibitory mechanisms in asthma. Am. J. Respir. Crit. Care Med. 161, S176–S181 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Greenfeder, S., Umland, S. P., Cuss, F. M., Chapman, R. W. & Egan, R. W. The role of interleukin-5 in allergic eosinophilic disease. Respir. Res. 2, 71–79 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leckie, M. J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness and the late asthmatic response. Lancet 356, 2144–2148 (2000). The first study of a blocking antibody to IL-5 showed a marked reduction in circulating and sputum eosinophils but no change in the response to allergen or in airway hyperresponsiveness, raising doubts about the role of eosinophils in asthma.

    Article  CAS  PubMed  Google Scholar 

  53. Kips, J. C. et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am. J. Respir. Crit. Care Med. 167, 1655–1659 (2003).

    Article  PubMed  Google Scholar 

  54. Flood-Page, P. T., Menzies-Gow, A. N., Kay, A. B. & Robinson, D. S. Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airways. Am. J. Respir. Crit. Care Med. (2003).

  55. Morokata, T., Ida, K. & Yamada, T. Characterization of YM-90709 as a novel antagonist which inhibits the binding of interleukin-5 to interleukin-5 receptor. Int. Immunopharmacol. 2, 1693–1702 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Steinke, J. W. & Borish, L. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir. Res. 2, 66–70 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gavett, S. H. et al. Interleukin-4 receptor blockade prevents airway responses induced by antigen challenge in mice. Am. J. Physiol. 272, L253–61 (1997).

    CAS  PubMed  Google Scholar 

  58. Borish, L. C. et al. Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 160, 1816–1823 (1999). The first study of IL-4 inhibition using a nebulized soluble receptor in patients with moderate asthma, showed a significant steroid-sparing effect, but a beneficial effect was not confirmed in later studies in milder asthma.

    Article  CAS  PubMed  Google Scholar 

  59. Borish, L. C. et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J. Allergy Clin. Immunol. 107, 963–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Economides, A. N. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nature Med. 9, 47–52 (2003). Reports that high-affinity antibodies against the two receptor components of certain cytokines (IL-4, IL-6, IL-13) are very potent blockers of cytokine action.

    Article  CAS  PubMed  Google Scholar 

  61. Shanafelt, A. B. et al. An immune cell-selective interleukin 4 agonist. Proc. Natl Acad. Sci. USA 95, 9454–9458 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jiang, H., Harris, M. B. & Rothman, P. IL-4/IL-13 signaling beyond JAK/STAT. J. Allergy Clin. Immunol. 105, 1063–1070 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Foster, P. S. STAT6: an intracellular target for the inhibition of allergic disease. Clin. Exp. Allergy 29, 12–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Wills-Karp, M. & Chiaramonte, M. Interleukin-13 in asthma. Curr. Opin. Pulm. Med 9, 21–27 (2003). Summarizes the growing evidence for IL-13 as a target for new asthma therapies, based on animal models, human genetic studies and clinical studies.

    Article  CAS  PubMed  Google Scholar 

  65. Walter, D. M. et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J. Immunol. 167, 4668–4675 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Kuperman, D. A. et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nature Med. 8, 885–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Levitt, R. C. et al. IL-9 pathway in asthma: new therapeutic targets for allergic inflammatory disorders. J. Allergy Clin. Immunol. 103, S485–S491 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Longphre, M. et al. Allergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells. J. Clin. Invest. 104, 1375–1382 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimbara, A. et al. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J. Allergy Clin. Immunol. 105, 108–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Cheng, G. et al. Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am. J. Respir. Crit. Care Med. 166, 409–416 (2002).

    Article  PubMed  Google Scholar 

  72. Zhou, Y., McLane, M. & Levitt, R. C. Interleukin-9 as a therapeutic target for asthma. Respir. Res. 2, 80–84 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sousa, A. R., Lane, S. J., Nakhosteen, J. A., Lee, T. H. & Poston, R. N. Expression of interleukin-1β (IL-1β) and interleukin-1 receptor antagonist (IL-1ra) on asthmatic bronchial epithelium. Am. J. Respir. Crit. Care Med. 154, 1061–1066 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Arend, W. P., Malyak, M., Guthridge, C. J. & Gabay, C. Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol. 16, 27–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Rosenwasser, L. J. Biologic activities of IL-1 and its role in human disease. J. Allergy Clin. Immunol. 102, 344–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Kips, J. C., Tavernier, J. H., Joos, G. F., Peleman, R. A. & Pauwels, R. A. The potential role of tumor necrosis factor α in asthma. Clin. Exp. Allergy 23, 247–250 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Palladino, M. A., Bahjat, F. R., Theodorakis, E. A. & Moldawer, L. L. Anti-TNF-α therapies: the next generation. Nature Rev. Drug Discov. 2, 736–746 (2003).

    Article  CAS  Google Scholar 

  78. Rabinowitz, M. H. et al. Design of selective and soluble inhibitors of tumor necrosis factor-α converting nzyme (TACE). J. Med. Chem. 44, 4252–4267 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Barnes, P. J. IL-10: a key regulator of allergic disease. Clin. Exp. Allergy 31, 667–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Borish, L. et al. Interleukin-10 regulation in normal subjects and patients with asthma. J. Allergy Clin. Immunol. 97, 1288–1296 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. John, M. et al. Inhaled corticosteroids increase IL-10 but reduce MIP-1α, GM-CSF and IFN-γ release from alveolar macrophages in asthma. Am. J. Respir. Crit. Care Med. 157, 256–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Zuany-Amorim, C. et al. Interleukin-10 inhibits antigen-induced cellular recruitment into the airways of sensitized mice. J. Clin. Invest. 95, 2644–2651 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oh, J. W. et al. CD4 T-helper cells engineered to produce IL-10 prevent allergen-induced airway hyperreactivity and inflammation. J. Allergy Clin. Immunol. 110, 460–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Jutel, M. et al. IL-10 and TGF-β cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur. J. Immunol. 33, 1205–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Fedorak, R. N. et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn's disease. Gastroenterology 119, 1473–1482 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Seldon, P. M. & Giembycz, M. A. Suppression of granulocyte/macrophage colony-stimulating factor release from human monocytes by cyclic AMP-elevating drugs: role of interleukin-10. Br. J. Pharmacol. 134, 58–67 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lack, G. et al. Nebulized IFN-γ inhibits the development of secondary allergic responses in mice. J. Immunol. 157, 1432–1439 (1996).

    CAS  PubMed  Google Scholar 

  88. Boguniewicz, M., Martin, R. J., Martin, D., Gibson, U. & Celniker, A. The effects of nebulized recombinant interferon-γ in asthmatic airways. J. Allergy Clin. Immunol. 95, 133–135 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Benjaponpitak, S. et al. The kinetics of change in cytokine production by CD4 T cells during conventional allergen immunotherapy. J. Allergy Clin. Immunol. 103, 468–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Durham, S. R. et al. Grass pollen immunotherapy inhibits allergen-induced infiltration of CD4+ T lymphocytes and eosinophils in the nasal mucosa and increases the number of cells expressing messenger RNA for interferon-γ. J. Allergy Clin. Immunol. 97, 1356–1365 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Simon, H. U., Seelbach, H., Ehmann, R. & Schmitz, M. Clinical and immunological effects of low-dose IFN-γ treatment in patients with corticosteroid-resistant asthma. Allergy 58, 1250–1255 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Dinarello, C. A. Interleukin-18, a proinflammatory cytokine. Eur. Cytokine Netw. 11, 483–486 (2000).

    CAS  PubMed  Google Scholar 

  93. Trinchieri, G., Pflanz, S. & Kastelein, R. A. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19, 641–644 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Bryan, S. et al. Effects of recombinant human interleukin-12 on eosinophils, airway hyperreactivity and the late asthmatic response. Lancet 356, 2149–2153 (2000). A study of interleukin-12 therapy in patients with mild asthma which showed a reduction in circulating and sputum eosinophils, but no change in response to allergen or airway hyperresponsiveness. In addition, this treatment was associated with side effects, including malaise and cardiac arrhythmias.

    Article  CAS  PubMed  Google Scholar 

  95. Kim, T. S. et al. An ovalbumin-IL-12 fusion protein is more effective than ovalbumin plus free recombinant IL-12 in inducing a T helper cell type 1-dominated immune response and inhibiting antigen-specific IgE production. J. Immunol. 158, 4137–4144 (1997).

    CAS  PubMed  Google Scholar 

  96. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Proudfoot, A. E. Chemokine receptors: multifaceted therapeutic targets. Nature Rev. Immunol. 2, 106–115 (2002). A comprehensive review of chemokine receptors as therapeutic targets, indicating the progress made with the development of small-molecule inhibitors.

    Article  CAS  Google Scholar 

  98. Gutierrez-Ramos, J. C., Lloyd, C. & Gonzalo, J. A. Eotaxin: from an eosinophilic chemokine to a major regulator of allergic reactions. Immunol. Today 20, 500–504 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Ying, S. et al. Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (Intrinsic) asthmatics. J. Immunol. 163, 6321–6329 (1999).

    CAS  PubMed  Google Scholar 

  100. Gonzalo, J. A. et al. Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines, and adhesion receptors. J. Clin. Invest. 98, 2332–2345 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Erin, E. M., Williams, T. J., Barnes, P. J. & Hansel, T. T. Eotaxin receptor (CCR3) antagonism in asthma and allergic disease. Curr. Drug Targets. Inflamm. Allergy 1, 201–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Campbell, E. M. et al. Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2−/− mice: the role of mast cells. J. Immunol. 163, 2160–2167 (1999).

    CAS  PubMed  Google Scholar 

  103. Lloyd, C. M. et al. CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J. Exp. Med. 191, 265–274 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chung, C. D. et al. CCR8 is not essential for the development of inflammation in a mouse model of allergic airway disease. J. Immunol. 170, 581–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Lukacs, N. W., Berlin, A., Schols, D., Skerlj, R. T. & Bridger, G. J. AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am. J. Pathol. 160, 1353–1360 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Essayan, D. M. Cyclic nucleotide phosphodiesterases. J. Allergy Clin. Immunol. 108, 671–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Torphy, T. J. Phosphodiesterase isoenzymes. Am. J. Respir. Crit. Care Med. 157, 351–370 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Houslay, M. D. & Adams, D. R. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem. J. 370, 1–18 (2003). An up-to-date review of phosphodiesterase families, including isoenzymes and splice variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Giembycz, M. A. Cilomilast: a breath of relief? Trends Mol. Med. 7, 433–434 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Harbison, P. L. et al. The effect of a novel orally active selective PDE4 isoenzyme inhibitor (CD840) on allergen-induced responses in asthmatic subjects. Eur. Respir. J. 10, 1008–1014 (1997).

    Article  Google Scholar 

  111. Reid, P. Roflumilast. Curr. Opin. Investig. Drugs 3, 1165–1170 (2002).

    CAS  PubMed  Google Scholar 

  112. Compton, C. H. et al. Cilomilast, a selective phosphodiesterase-4 inhibitor for treatment of patients with chronic obstructive pulmonary disease: a randomised, dose-ranging study. Lancet 358, 265–270 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Lamontagne, S. et al. Localization of phosphodiesterase-4 isoforms in the medulla and nodose ganglion of the squirrel monkey. Brain Res. 920, 84–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Jin, S. L. & Conti, M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-α responses. Proc. Natl Acad. Sci. USA 99, 7628–7633 (2002). This paper showed that targetted deletion of PDE4B inhibits the inflammatory response, whereas deletion of PDE4D is without any effect. This has led to a search for selective PDE4B inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kuss, H., Hoefgen, N., Johanssen, S., Kronbach, T. & Rundfeldt, C. In vivo efficacy in airway disease models of N-(3, 5-dichloropyrid-4-yl)-[1-(4-fluorobenzyl)-5-hydroxy-indole-3-yl]-glyo xylic acid amide (AWD 12-281), a selective phosphodiesterase 4 inhibitor for inhaled administration. J. Pharmacol. Exp. Ther. 307, 373–385 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Delhase, M., Li, N. & Karin, M. Kinase regulation in inflammatory response. Nature 406, 367–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Roshak, A. K., Callahan, J. F. & Blake, S. M. Small-molecule inhibitors of NF-κB for the treatment of inflammatory joint disease. Curr. Opin. Pharmacol. 2, 316–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Nasuhara, Y., Adcock, I. M., Catley, M., Barnes, P. J. & Newton, R. Differential IKK activation and IκBα degradation by interleukin-1β and tumor necrosis factor-α in human U937 monocytic cells: evidence for additional regulatory steps in κB-dependent transcription. J. Biol. Chem. 274, 19965–19972 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Evans, D. J., Cullinan, P. & Geddes, D. M. Cyclosporin as an oral corticosteroid sparing agent in stable asthma (Cochrane Review). Cochrane. Database. Syst. Rev. 2, CD002993 (2001).

  120. Sehgal, S. N. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant. Proc. 35, 7S–14S (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Zhou, M. & Ouyang, W. The function role of GATA-3 in Th1 and Th2 differentiation. Immunol. Res. 28, 25–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Finotto, S. et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295, 336–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Kumar, S., Boehm, J. & Lee, J. C. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nature Rev. Drug Discov. 2, 717–726 (2003).

    Article  CAS  Google Scholar 

  124. Schafer, P. H., Wadsworth, S. A., Wang, L. & Siekierka, J. J. p38α Mitogen-activated protein kinase is activated by CD28-mediated signaling and is required for IL-4 production by human CD4+CD45RO+ T cells and Th2 effector cells. J. Immunol. 162, 7110–7119 (1999).

    CAS  PubMed  Google Scholar 

  125. Kankaanranta, H., Giembycz, M. A., Barnes, P. J. & Lindsay, D. A. SB203580, an inhibitor of p38 mitogen-activated protein kinase, enhances constitutive apoptosis of cytokine-deprived human eosinophils. J. Pharmacol. Exp. Ther. 290, 621–628 (1999).

    CAS  PubMed  Google Scholar 

  126. Irusen, E. et al. p38 Mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: Role in steroid-insensitive asthma. J. Allergy Clin. Immunol. 109, 649–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Huang, T. J., Adcock, I. M. & Chung, K. F. A novel transcription factor inhibitor, SP100030, inhibits cytokine gene expression, but not airway eosinophilia or hyperresponsiveness in sensitized and allergen-exposed rat. Br. J. Pharmacol. 134, 1029–1036 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sousa, A. R., Lane, S. J., Soh, C. & Lee, T. H. In vivo resistance to corticosteroids in bronchial asthma is associated with enhanced phosyphorylation of JUN N-terminal kinase and failure of prednisolone to inhibit JUN N-terminal kinase phosphorylation. J. Allergy Clin. Immunol. 104, 565–574 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Costello, P. S. et al. Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells. Oncogene 13, 2595–2605 (1996).

    CAS  PubMed  Google Scholar 

  130. Yousefi, S., Hoessli, D. C., Blaser, K., Mills, G. B. & Simon, H. U. Requirement of Lyn and Syk tyrosine kinases for the prevention of apoptosis by cytokines in human eosinophils. J. Exp. Med. 183, 1407–1414 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Stenton, G. R. et al. Inhibition of allergic inflammation in the airways using aerosolized antisense to Syk kinase. J. Immunol. 169, 1028–1036 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Amoui, M., Draber, P. & Draberova, L. Src family-selective tyrosine kinase inhibitor, PP1, inhibits both Fc epsilonRI- and Thy-1-mediated activation of rat basophilic leukemia cells. Eur. J. Immunol. 27, 1881–1886 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Lynch, O. T., Giembycz, M. A., Daniels, I., Barnes, P. J. & Lindsay, M. A. Pleiotropic role of lyn kinase in leukotriene B4-induced eosinophil activation. Blood 95, 3541–3547 (2000).

    CAS  PubMed  Google Scholar 

  134. Adachi, T., Stafford, S., Sur, S. & Alam, R. A novel Lyn-binding peptide inhibitor blocks eosinophil differentiation, survival, and airway eosinophilic inflammation. J. Immunol. 163, 939–946 (1999).

    CAS  PubMed  Google Scholar 

  135. Schleimer, R. P. & Bochner, B. S. The role of adhesion molecules in allergic inflammation and their suitability as targets of antiallergic therapy. Clin. Exp. Allergy 28 (Suppl. 3), 15–23 (1998).

    CAS  PubMed  Google Scholar 

  136. Wegner, C. D. et al. Intracellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247, 456–459 (1990).

    Article  CAS  PubMed  Google Scholar 

  137. Sun, J. et al. Contribution of intracellular adhesion molecule-1 in allergen-induced airway hyperresponsiveness and inflammation in sensitised Brown-Norway rats. Int Arch Allergy Immunol 104, 291–295 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Yamamoto, H. & Nagata, M. Regulatory mechanisms of eosinophil adhesion to and transmigration across endothelial cells by α4 and β2 integrins. Int. Arch. Allergy Immunol. 120 (Suppl. 1), 24–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Lin Kc et al. Selective, tight-binding inhibitors of integrin α4β1 that inhibit allergic airway responses. J. Med. Chem. 42, 920–934 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Ghosh, S. et al. Natalizumab for active Crohn's disease. N. Engl. J. Med. 348, 24–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Abraham, W. M. et al. Selectin blockade prevents antigen-induced late bronchial responses and airway hyperresponsiveness in allergic sheep. Am. J. Respir. Crit. Care Med. 159, 1205–1214 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Kim, M. K., Brandley, B. K., Anderson, M. B. & Bochner, B. S. Antagonism of selectin-dependent adhesion of human eosinophils and neutrophils by glycomimetics and oligosaccharide compounds. Am. J. Respir. Cell Mol. Biol. 19, 836–841 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Heinke, S., Szucs, G., Norris, A., Droogmans, G. & Nilius, B. Inhibition of volume-activated chloride currents in endothelial cells by chromones. Br. J. Pharmacol. 115, 1393–1398 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Norris, A. A. & Alton, E. W. Chloride transport and the action of sodium cromoglycate and nedocromil sodium in asthma. Clin. Exp. Allergy 26, 250–253 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. Bianco, S. et al. Inhaled loop diuretics as potential new anti-asthmatic drugs. Eur. Resp. J. 6, 130–134 (1993).

    CAS  Google Scholar 

  146. Yates, D. H. et al. Effect of acute and chronic inhaled furosemide on bronchial hyperresponsiveness in mild asthma. Am. J. Respir. Crit. Care Med. 152, 892–896 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Djukanovic, R. The role of co-stimulation in airway inflammation. Clin. Exp. Allergy 30 (Suppl. 1), 46–50 (2000).

    Article  PubMed  Google Scholar 

  148. Haczku, A. et al. Anti-CD86 (B7. 2) treatment abolishes allergic airway hyperresponsiveness in mice. Am. J. Respir. Crit. Care Med. 159, 1638–1643 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Bugeon, L. & Dallman, M. J. Costimulation of T cells. Am. J. Respir. Crit. Care Med. 162, S164–S168 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Van Oosterhout, A. J. et al. Murine CTLA4-IgG treatment inhibits airway eosinophilia and hyperresponsiveness and attenuates IgE upregulation in a murine model of allergic asthma. Am. J. Respir. Cell Mol. Biol. 17, 386–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. Deurloo, D. T., van Esch, B. C., Hofstra, C. L., Nijkamp, F. P. & Van Oosterhout, A. J. CTLA4-IgG reverses asthma manifestations in a mild but not in a more 'severe' ongoing murine model. Am. J. Respir. Cell. Mol. Biol. 25, 751–760 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. van Neerven, R. J. et al. Requirement of CD28-CD86 costimulation for allergen-specific T cell proliferation and cytokine expression. Clin. Exp. Allergy 28, 808–816 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. Gonzalo, J. A. et al. ICOS is critical for T helper cell-mediated lung mucosal inflammatory responses. Nature Immunol. 2, 597–604 (2001).

    Article  CAS  Google Scholar 

  154. Walker, S., Monteil, M., Phelan, K., Lasserson, T. J. & Walters, E. H. Anti-IgE for chronic asthma. Cochrane. Database. Syst. Rev. CD003559 (2003). A summary of the current clinical studies of anti-IgE antibody (omalizumab) in the treatment of asthma.

  155. Rosenwasser, L. J., Busse, W. W., Lizambri, R. G., Olejnik, T. A. & Totoritis, M. C. Allergic asthma and an anti-CD23 mAb (IDEC-152): results of a phase I, single-dose, dose-escalating clinical trial. J. Allergy Clin. Immunol. 112, 563–570 (2003).

    Article  PubMed  Google Scholar 

  156. Hsu, C. H. et al. Immunoprophylaxis of allergen-induced immunoglobulin E synthesis and airway hyperresponsiveness in vivo by genetic immunization. Nature Med. 2, 540–544 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Oldfield, W. L., Larche, M. & Kay, A. B. Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: a randomised controlled trial. Lancet 360, 47–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Herz, U. et al. BCG infection suppresses allergic sensitization and development of increased airway reactivity in an animal model. J. Allergy Clin. Immunol. 102, 867–874 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Choi, I. S. & Koh, Y. I. Therapeutic effects of BCG vaccination in adult asthmatic patients: a randomized, controlled trial. Ann. Allergy Asthma Immunol. 88, 584–591 (2002).

    Article  PubMed  Google Scholar 

  160. Horner, A. A., Van Uden, J. H., Zubeldia, J. M., Broide, D. & Raz, E. DNA-based immunotherapeutics for the treatment of allergic disease. Immunol. Rev. 179, 102–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Sur, S. et al. Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. J. Immunol. 162, 6284–6293 (1999).

    CAS  PubMed  Google Scholar 

  162. Kline, J. N., Kitagaki, K., Businga, T. R. & Jain, V. V. Treatment of established asthma in a murine model using CpG oligodeoxynucleotides. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L170–L179 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Santeliz, J. V., Van Nest, G., Traquina, P., Larsen, E. & Wills-Karp, M. Amb a 1-linked CpG oligodeoxynucleotides reverse established airway hyperresponsiveness in a murine model of asthma. J. Allergy Clin. Immunol. 109, 455–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Agrawal, S. & Kandimalla, E. R. Medicinal chemistry and therapeutic potential of CpG DNA. Trends Mol. Med. 8, 114–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Cookson, W. O. Asthma genetics. Chest 121, 7S–13S (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Hall, I. P. Pharmacogenetics of asthma. Eur. Respir. J. 15, 449–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Powell, R. M., Hamilton, L. M., Holgate, S. T., Davies, D. E. & Holloway, J. W. ADAM33: a novel therapeutic target for asthma. Expert. Opin. Ther. Targets 7, 485–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Nyce, J. W. & Metzger, W. J. DNA antisense therapy for asthma in an animal model. Nature 385, 721–725 (1997).

    Article  CAS  PubMed  Google Scholar 

  169. Sandrasagra, A. et al. Discovery and development of respirable antisense therapeutics for asthma. Antisense Nucleic Acid Drug Dev. 12, 177–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Morishita, R., Tomita, N., Kaneda, Y., & Ogihara, T. Molecular therapy to inhibit NF-κB activation by transcription factor decoy oligonucleotides. Curr. Opin. Pharmacol. 4, 139–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Wall, N. R. & Shi, Y. Small RNA: can RNA interference be exploited for therapy? Lancet 362, 1401–1403 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Zhang, X. et al. Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J. Biol. Chem. 279, 10677–10684 (2004). An important study showing that nasal application of a small interfering RNA is able to suppress the expression of a target gene in the lungs.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

P.J.B. receives research funding from GlaxoSmithKline, AstraZeneca, Boehringer Ingelheim, Novartis and Scios for research into asthma and chronic obstructive pulmonary disease.

Related links

Related links

DATABASES

Entrez Gene

A1 receptor

A2A receptor

A2B receptor

ANP

CCR3

CRTH2

CTLA4

CysLT1 receptor

CXCR4

ET1

ETA receptor

ETB receptor

FLAP

GATA3

glucocorticoid receptor

ICAM1

ICOS

IKK2

IL-1

IL-1ra

IL-4

IL-4 receptor

IL-5

IL-5 receptor

IL-10

IL-12

IL-13

IL-13 receptor α1

IL-18

iNOS

LTB4 receptor

mast-cell tryptase

NF-κB

P2Y2 receptor

PAR2

PDE4

STAT6

TACE

VCAM1

VIP

OMIM

Chronic obstructive pulmonary disease

Crohn's disease

psoriasis

rheumatoid arthritis

FURTHER INFORMATION

Encyclopedia of Life Sciences

Adrenergic receptors

allergens

asthma

asthma and atopy

Peter Barnes' webpage

Asthma UK

American Lung Association

American Academy of Asthma, Allergy and Immunology

National Heart, Lung and Blood Institute Asthma Fact Sheet

World Health Organization Health Topics — Asthma

Glossary

TH2 CELL

T helper 2 lymhocytes that predominate in asthma and which are characterized by the production of interleukins 4, 5, 9 and 13.

CYTOKINE

A small protein mediator that acts as a communicator between cells.

BRONCHODILATOR

A drug that relaxes airway smooth muscle and provides immediate relief from asthma symptoms.

AIRWAY HYPERRESPONSIVENESS

(AHR). Exaggerated airway-narrowing response to many environmental triggers, such as allergen and exercise, which is characteristic of asthma. It is normally measured by histamine or methacholine challenge.

CHEMOKINE

A small protein mediator that acts as a chemoattractant for inflammatory cells through the activation of chemokine receptors that have the typical structure of G-protein-coupled receptors.

PHOSPHODIESTERASES

(PDE). Enzymes that break down cyclic nucleotides in the cell. More than 12 families are now known, but the PDE4 family is prominent in inflammatory cells that are important in asthma.

CELL-ADHESION MOLECULES

Cell-surface proteins that are involved in the interaction between inflammatory and immune cells and structural cells, such as endothelial or epithelial cells.

CO-STIMULATORY MOLECULES

Surface proteins on antigen-presenting cells and T lymphocytes that enhance the interaction between the T-cell receptor and the major histocompatibility complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, P. New drugs for asthma. Nat Rev Drug Discov 3, 831–844 (2004). https://doi.org/10.1038/nrd1524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing