Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Alpha-1-antitrypsin expression in the lung is increased by airway delivery of gene-transfected macrophages

Abstract

Inadequate antiprotease activity in the lungs due to alpha-1-antitrypsin (A1AT) deficiency is a factor of early-onset emphysema. We propose a new approach to gene therapy that involves the intratracheal delivery of macrophages expressing human A1AT (hA1AT). Recombinant adeno-associated virus (rAAV) plasmids encoding the hA1AT gene were packaged into virions using 293 cells, and transgenic progeny virus was purified from the cells. The murine macrophage cell line J774A.1 was infected in vitro with the recombinant hA1AT rAAV virus. The hA1AT-producing macrophages were delivered intratracheally into mechanically ventilated C57BL/6J mice, a strain with low endogenous levels of A1AT. Transcription of hA1AT mRNA was detected in the transfected cells by RT-PCR, and protein expression was verified by immunohistochemistry. Levels of hA1AT in the cell culture medium and in the bronchoalveolar lavage (BAL) were assayed by ELISA. The concentration of hA1AT in J774A.1 cell-conditioned medium increased from undetectable levels prior to transfection, to 60 mg/l at 24 h post-transfection. At 1, 3 and 7 days after intratracheal delivery of transfected macrophages, hA1AT protein in BAL from C57BL/6J mice increased from undetectable levels to 2.5±0.9, 2.6±1.1 and 2.2±0.8 mg/l, respectively. These results suggest that airway delivery of macrophages overexpressing hA1AT may be an effective approach to enhance alveolar protection in A1AT deficiency.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Carrell RW, Lomas DA . Alpha1-antitrypsin deficiency – a model for conformational diseases. N Engl J Med 2002; 346: 45–53.

    Article  CAS  PubMed  Google Scholar 

  2. Coakley RJ, Taggart C, O'Neill S, McElvaney NG . Alpha1-antitrypsin deficiency: biological answers to clinical questions. Am J Med Sci 2001; 321: 33–41.

    Article  CAS  PubMed  Google Scholar 

  3. Wencker M, Fuhrmann B, Banik N, Konietzko N . Longitudinal follow-up of patients with alpha(1)-protease inhibitor deficiency before and during therapy with IV alpha(1)-protease inhibitor. Chest 2001; 119: 737–744.

    Article  CAS  PubMed  Google Scholar 

  4. Mullins CD, Huang X, Merchant S, Stoller JK . The direct medical costs of alpha(1)-antitrypsin deficiency. Chest 2001; 119: 745–752.

    Article  CAS  PubMed  Google Scholar 

  5. Dasi F et al. Asialofetuin liposome-mediated human alpha1-antitrypsin gene transfer in vivo results in stationary long-term gene expression. J Mol Med 2001; 79: 205–212.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenfeld MA et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science 1991; 252: 431–434.

    Article  CAS  PubMed  Google Scholar 

  7. Kay MA, Graham F, Leland F, Woo SL . Therapeutic serum concentrations of human alpha-1-antitrypsin after adenoviral-mediated gene transfer into mouse hepatocytes. Hepatology 1995; 21: 815–819.

    CAS  PubMed  Google Scholar 

  8. Kay MA et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat Genet 1995; 11: 191–197.

    Article  CAS  PubMed  Google Scholar 

  9. Setoguchi Y, Jaffe HA, Chu CS, Crystal RG . Intraperitoneal in vivo gene therapy to deliver alpha 1-antitrypsin to the systemic circulation. Am J Respir Cell Mol Biol 1994; 10: 369–377.

    Article  CAS  PubMed  Google Scholar 

  10. Levy MY, Barron LG, Meyer KB, Szoka Jr FC . Characterization of plasmid DNA transfer into mouse skeletal muscle: evaluation of uptake mechanism, expression and secretion of gene products into blood. Gene Therapy 1996; 3: 201–211.

    CAS  PubMed  Google Scholar 

  11. Schiedner G et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 1998; 18: 180–183.

    Article  CAS  PubMed  Google Scholar 

  12. Morral N et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity. Hum Gene Ther 1998; 9: 2709–2716.

    Article  CAS  PubMed  Google Scholar 

  13. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Flotte TR et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci USA 1993; 90: 10613–10617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998; 72: 4212–4223.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Flotte TR, Laube BL . Gene therapy in cystic fibrosis. Chest 2001; 120: 124S–131S.

    Article  CAS  PubMed  Google Scholar 

  17. Song S et al. Stable therapeutic serum levels of human alpha-1 antitrypsin (AAT) after portal vein injection of recombinant adeno-associated virus (rAAV) vectors. Gene Therapy 2001; 8: 1299–1306.

    Article  CAS  PubMed  Google Scholar 

  18. Song S et al. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci USA 1998; 95: 14384–14388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stecenko AA, Brigham KL . Gene therapy progress and prospects: alpha-1 antitrypsin. Gene Therapy 2003; 10: 95–99.

    Article  CAS  PubMed  Google Scholar 

  20. Gill DR et al. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Therapy 2001; 8: 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  21. Wu M et al. Genetically engineered macrophages expressing IFN-gamma restore alveolar immune function in scid mice. Proc Natl Acad Sci USA 2001; 98: 14589–14594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao W et al. Adeno-associated virus as a vector for liver-directed gene therapy. J Virol 1998; 72: 10222–10226.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Collaco RF, Cao X, Trempe JP . A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 1999; 238: 397–405.

    Article  CAS  PubMed  Google Scholar 

  24. Gardi C et al. Neutrophil lysosomal dysfunctions in mutant C57 Bl/6J mice: interstrain variations in content of lysosomal elastase, cathepsin G and their inhibitors. Biochem J 1994; 299 (Part 1): 237–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rennard SI et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol 1986; 60: 532–538.

    Article  CAS  PubMed  Google Scholar 

  26. Wewers MD et al. Replacement therapy for alpha 1-antitrypsin deficiency associated with emphysema. N Engl J Med 1987; 316: 1055–1062.

    Article  CAS  PubMed  Google Scholar 

  27. Gadek JE et al. Danazol-induced augmentation of serum alpha-1-antitrypsin levels in individuals with marked deficiency of this antiprotease. J Clin Invest 1980; 66: 82–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wewers MD et al. Evaluation of danazol therapy for patients with PiZZ alpha-1-antitrypsin deficiency. Am Rev Respir Dis 1986; 134: 476–480.

    CAS  PubMed  Google Scholar 

  29. Schwaiblmair M, Vogelmeier C, Fruhmann G . Long-term augmentation therapy in twenty patients with severe alpha-1-antitrypsin deficiency – three-year follow-up. Respiration 1997; 64: 10–15.

    Article  CAS  PubMed  Google Scholar 

  30. Yuan ZA, Soprano KJ, Kueppers F . Alpha-1 antitrypsin response of stimulated alveolar macrophages. J Cell Biochem 1992; 49: 410–416.

    Article  CAS  PubMed  Google Scholar 

  31. Hu C, Perlmutter DH . Cell-specific involvement of HNF-1beta in alpha(1)-antitrypsin gene expression in human respiratory epithelial cells. Am J Physiol Lung Cell Mol Physiol 2002; 282: L757–765.

    Article  CAS  PubMed  Google Scholar 

  32. Cichy J, Potempa J, Travis J . Biosynthesis of alpha1-proteinase inhibitor by human lung-derived epithelial cells. J Biol Chem 1997; 272: 8250–8255.

    Article  CAS  PubMed  Google Scholar 

  33. Crystal RG . Alpha 1-antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J Clin Invest 1990; 85: 1343–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vogelmeier C et al. The intrapulmonary half-life and safety of aerosolized alpha1-protease inhibitor in normal volunteers. Am J Respir Crit Care Med 1997; 155: 536–541.

    Article  CAS  PubMed  Google Scholar 

  35. Kropp J et al. Inhalation of [123I]alpha1-protease inhibitor: toward a new therapeutic concept of alpha1-protease inhibitor deficiency? J Nucl Med 2001; 42: 744–751.

    CAS  PubMed  Google Scholar 

  36. Dhami R et al. Pulmonary epithelial expression of human alpha1-antitrypsin in transgenic mice results in delivery of alpha1-antitrypsin protein to the interstitium. J Mol Med 1999; 77: 377–385.

    Article  CAS  PubMed  Google Scholar 

  37. Pasula R, Weaver T, Martinez MA, Martin II WJ . Morphologic detection and functional assessment of reconstituted normal alveolar macrophages in the lungs of SCID mice. J Immunol 2002; 169: 4504–4510.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Institute of Health (R01 AI48455).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Wu, M., Nelson, D. et al. Alpha-1-antitrypsin expression in the lung is increased by airway delivery of gene-transfected macrophages. Gene Ther 10, 2148–2152 (2003). https://doi.org/10.1038/sj.gt.3302121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302121

Keywords

This article is cited by

Search

Quick links