Semin Respir Crit Care Med 2015; 36(01): 044-055
DOI: 10.1055/s-0034-1396907
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Pseudomonas aeruginosa: Evolution of Antimicrobial Resistance and Implications for Therapy

Kate McCarthy
1   University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
02 February 2015 (online)

Abstract

Pseudomonas aeruginosa is a formidable pathogen in the infection arena. It is able to easily adapt to the environment which it inhabits and can also colonize and invade the human host to cause serious infections. In 2011, it was responsible for 7.1% of all health care–associated infection in the United States. The morbidity and mortality of both blood stream infections and ventilator-associated pneumonia are significant. On a global scale, we have seen the development of not only multidrug resistance but also extensive and pan drug resistance in this organism. This is often associated with limited clonal types of which we now have epidemiological evidence of spread. With this has come reduced antibiotic treatment options. Consideration of antibiotic infusions, combination therapy, and inhalational therapy has occurred in an attempt to gain the upper ground. Gram-negative resistance has appropriately been described as a global emergency.

 
  • References

  • 1 Magill SS, Edwards JR, Bamberg W , et al; Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 2014; 370 (13) 1198-1208
  • 2 Zarb P, Coignard B, Griskeviciene J , et al; National Contact Points for the ECDC pilot point prevalence survey; Hospital Contact Points for the ECDC pilot point prevalence survey. The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Euro Surveill 2012; 17 (46) 20316
  • 3 Kollef MH, Chastre J, Fagon JY , et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa*. Crit Care Med 2014; 42 (10) 2178-2187
  • 4 Al-Hasan MN, Wilson JW, Lahr BD, Eckel-Passow JE, Baddour LM. Incidence of Pseudomonas aeruginosa bacteremia: a population-based study. Am J Med 2008; 121 (8) 702-708
  • 5 Cheong HS, Kang CI, Wi YM , et al. Clinical significance and predictors of community-onset Pseudomonas aeruginosa bacteremia. Am J Med 2008; 121 (8) 709-714
  • 6 Marra AR, Bar K, Bearman GM, Wenzel RP, Edmond MB. Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa. J Infect 2006; 53 (1) 30-35
  • 7 Kang C-I, Kim S-H, Kim H-B , et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 2003; 37 (6) 745-751
  • 8 Scheetz MH, Hoffman M, Bolon MK , et al. Morbidity associated with Pseudomonas aeruginosa bloodstream infections. Diagn Microbiol Infect Dis 2009; 64 (3) 311-319
  • 9 Joo EJ, Kang CI, Ha YE , et al. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia: clinical impact of antimicrobial resistance on outcome. Microb Drug Resist 2011; 17 (2) 305-312
  • 10 Joo EJ, Kang CI, Ha YE , et al. Clinical predictors of Pseudomonas aeruginosa bacteremia among Gram-negative bacterial infections in non-neutropenic patients with solid tumor. J Infect 2011; 63 (3) 207-214
  • 11 Chen SCLR, Lawrence RH, Byth K, Sorrell TC. Pseudomonas aeruginosa bacteraemia. Is pancreatobiliary disease a risk factor?. Med J Aust 1993; 159 (9) 592-597
  • 12 Schechner V, Gottesman T, Schwartz O , et al. Pseudomonas aeruginosa bacteremia upon hospital admission: risk factors for mortality and influence of inadequate empirical antimicrobial therapy. Diagn Microbiol Infect Dis 2011; 71 (1) 38-45
  • 13 Johnson LE, D'Agata EM, Paterson DL , et al. Pseudomonas aeruginosa bacteremia over a 10-year period: multidrug resistance and outcomes in transplant recipients. Transpl Infect Dis 2009; 11 (3) 227-234
  • 14 Suárez C, Peña C, Gavaldà L , et al. Influence of carbapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. Int J Infect Dis 2010; 14 (Suppl. 03) e73-e78
  • 15 Morata L, Cobos-Trigueros N, Martínez JA , et al. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2012; 56 (9) 4833-4837
  • 16 Peña C, Gómez-Zorrilla S, Oriol I , et al. Impact of multidrug resistance on Pseudomonas aeruginosa ventilator-associated pneumonia outcome: predictors of early and crude mortality. Eur J Clin Microbiol Infect Dis 2013; 32 (3) 413-420
  • 17 Tumbarello M, De Pascale G, Trecarichi EM , et al. Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit patients. Intensive Care Med 2013; 39 (4) 682-692
  • 18 Planquette B, Timsit JF, Misset BY , et al; OUTCOMEREA Study Group. Pseudomonas aeruginosa ventilator-associated pneumonia. predictive factors of treatment failure. Am J Respir Crit Care Med 2013; 188 (1) 69-76
  • 19 Garnacho-Montero J, Sa-Borges M, Sole-Violan J , et al. Optimal management therapy for Pseudomonas aeruginosa ventilator-associated pneumonia: an observational, multicenter study comparing monotherapy with combination antibiotic therapy. Crit Care Med 2007; 35 (8) 1888-1895
  • 20 Magiorakos AP, Srinivasan A, Carey RB , et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18 (3) 268-281
  • 21 Institute CLS. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Second Informational Supplement. In: Document M100–S22. Wayne, PA; 2012
  • 22 EUCAST Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 3.1; 2013
  • 23 Croughs PD, Li B, Hoogkamp-Korstanje JA, Stobberingh E. Antibiotic Resistance Surveillance Group. Thirteen years of antibiotic susceptibility surveillance of Pseudomonas aeruginosa from intensive care units and urology services in the Netherlands. Eur J Clin Microbiol Infect Dis 2013; 32 (2) 283-288
  • 24 Slekovec C, Robert J, Trystram D , et al; ONERBA. Pseudomonas aeruginosa in French hospitals between 2001 and 2011: back to susceptibility. Eur J Clin Microbiol Infect Dis 2014; 33 (10) 1713-1717
  • 25 Zilberberg MD, Shorr AF. Prevalence of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009. J Hosp Med 2013; 8 (10) 559-563
  • 26 Sievert DM, Ricks P, Edwards JR , et al; National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 2013; 34 (1) 1-14
  • 27 Onguru P, Erbay A, Bodur H , et al. Imipenem-resistant Pseudomonas aeruginosa: risk factors for nosocomial infections. J Korean Med Sci 2008; 23 (6) 982-987
  • 28 Lautenbach E, Synnestvedt M, Weiner MG , et al. Imipenem resistance in Pseudomonas aeruginosa: emergence, epidemiology, and impact on clinical and economic outcomes. Infect Control Hosp Epidemiol 2010; 31 (1) 47-53
  • 29 Nakamura A, Miyake K, Misawa S , et al. Meropenem as predictive risk factor for isolation of multidrug-resistant Pseudomonas aeruginosa. J Hosp Infect 2013; 83 (2) 153-155
  • 30 Peña C, Suarez C, Gozalo M , et al; Spanish Network for Research in Infectious Diseases REIPI. Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob Agents Chemother 2012; 56 (3) 1265-1272
  • 31 Tuon FF, Gortz LW, Rocha JL. Risk factors for pan-resistant Pseudomonas aeruginosa bacteremia and the adequacy of antibiotic therapy. Braz J Infect Dis 2012; 16 (4) 351-356
  • 32 Harris AD, Smith D, Johnson JA, Bradham DD, Roghmann MC. Risk factors for imipenem-resistant Pseudomonas aeruginosa among hospitalized patients. Clin Infect Dis 2002; 34 (3) 340-345
  • 33 American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171 (4) 388-416
  • 34 Xie J, Ma X, Huang Y , et al. Value of American Thoracic Society guidelines in predicting infection or colonization with multidrug-resistant organisms in critically ill patients. PLoS ONE 2014; 9 (3) e89687
  • 35 Tam VH, Rogers CA, Chang KT, Weston JS, Caeiro JP, Garey KW. Impact of multidrug-resistant Pseudomonas aeruginosa bacteremia on patient outcomes. Antimicrob Agents Chemother 2010; 54 (9) 3717-3722
  • 36 Willmann M, Kuebart I, Marschal M , et al. Effect of metallo-β-lactamase production and multidrug resistance on clinical outcomes in patients with Pseudomonas aeruginosa bloodstream infection: a retrospective cohort study. BMC Infect Dis 2013; 13: 515
  • 37 Suárez C, Peña C, Tubau F , et al. Clinical impact of imipenem-resistant Pseudomonas aeruginosa bloodstream infections. J Infect 2009; 58 (4) 285-290
  • 38 Esterly JS, Wagner J, McLaughlin MM, Postelnick MJ, Qi C, Scheetz MH. Evaluation of clinical outcomes in patients with bloodstream infections due to Gram-negative bacteria according to carbapenem MIC stratification. Antimicrob Agents Chemother 2012; 56 (9) 4885-4890
  • 39 Parker CM, Kutsogiannis J, Muscedere J , et al; Canadian Critical Care Trials Group. Ventilator-associated pneumonia caused by multidrug-resistant organisms or Pseudomonas aeruginosa: prevalence, incidence, risk factors, and outcomes. J Crit Care 2008; 23 (1) 18-26
  • 40 Luyt CE, Aubry A, Lu Q , et al. Imipenem, meropenem, or doripenem to treat patients with Pseudomonas aeruginosa ventilator-associated pneumonia. Antimicrob Agents Chemother 2014; 58 (3) 1372-1380
  • 41 Moyá B, Beceiro A, Cabot G , et al. Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother 2012; 56 (9) 4771-4778
  • 42 Fournier D, Richardot C, Müller E , et al. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa. J Antimicrob Chemother 2013; 68 (8) 1772-1780
  • 43 Riera E, Cabot G, Mulet X , et al. Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother 2011; 66 (9) 2022-2027
  • 44 Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22 (4) 582-610
  • 45 Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?. Clin Infect Dis 2002; 34 (5) 634-640
  • 46 Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35 (1) 147-151
  • 47 Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams?. Lancet Infect Dis 2011; 11 (5) 381-393
  • 48 Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T. IMP-43 and IMP-44 metallo-β-lactamases with increased carbapenemase activities in multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57 (9) 4427-4432
  • 49 Lauretti L, Riccio ML, Mazzariol A , et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999; 43 (7) 1584-1590
  • 50 Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother 2004; 48 (12) 4654-4661
  • 51 Yong D, Toleman MA, Bell J , et al. Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother 2012; 56 (12) 6154-6159
  • 52 Pollini S, Maradei S, Pecile P , et al. FIM-1, a new acquired metallo-β-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Chemother 2013; 57 (1) 410-416
  • 53 Yong D, Toleman MA, Giske CG , et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53 (12) 5046-5054
  • 54 Rolain JM, Parola P, Cornaglia G. New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia?. Clin Microbiol Infect 2010; 16 (12) 1699-1701
  • 55 Jovcic B, Lepsanovic Z, Suljagic V , et al. Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother 2011; 55 (8) 3929-3931
  • 56 Fajardo A, Hernando-Amado S, Oliver A, Ball G, Filloux A, Martinez JL. Characterization of a novel Zn2+-dependent intrinsic imipenemase from Pseudomonas aeruginosa. J Antimicrob Chemother 2014; 69 (11) 2972-2978
  • 57 Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA, Quinn JP. Colombian Nosocomial Resistance Study Group. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother 2007; 51 (4) 1553-1555
  • 58 Martínez T, Vázquez GJ, Aquino EE, Ramírez-Ronda R, Robledo IE. First report of a Pseudomonas aeruginosa clinical isolate co-harbouring KPC-2 and IMP-18 carbapenemases. Int J Antimicrob Agents 2012; 39 (6) 542-543
  • 59 Sevillano E, Gallego L, García-Lobo JM. First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathol Biol (Paris) 2009; 57 (6) 493-495
  • 60 El Garch F, Bogaerts P, Bebrone C, Galleni M, Glupczynski Y. OXA-198, an acquired carbapenem-hydrolyzing class D beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 2011; 55 (10) 4828-4833
  • 61 Pirnay JP, Bilocq F, Pot B , et al. Pseudomonas aeruginosa population structure revisited. PLoS ONE 2009; 4 (11) e7740
  • 62 Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 2004; 42 (12) 5644-5649
  • 63 Wiehlmann L, Wagner G, Cramer N , et al. Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2007; 104 (19) 8101-8106
  • 64 Kidd TJ, Ritchie SR, Ramsay KA, Grimwood K, Bell SC, Rainey PB. Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting. PLoS ONE 2012; 7 (9) e44199
  • 65 Micol JB, de Botton S, Guieze R , et al. An 18-case outbreak of drug-resistant Pseudomonas aeruginosa bacteriemia in hematology patients. Haematologica 2006; 91 (8) 1134-1138
  • 66 Cardoso O, Alves AF, Leitão R. Metallo-beta-lactamase VIM-2 in Pseudomonas aeruginosa isolates from a cystic fibrosis patient. Int J Antimicrob Agents 2008; 31 (4) 375-379
  • 67 Harris A, Torres-Viera C, Venkataraman L, DeGirolami P, Samore M, Carmeli Y. Epidemiology and clinical outcomes of patients with multiresistant Pseudomonas aeruginosa. Clin Infect Dis 1999; 28 (5) 1128-1133
  • 68 Viedma E, Juan C, Villa J , et al. VIM-2-producing multidrug-resistant Pseudomonas aeruginosa ST175 clone, Spain. Emerg Infect Dis 2012; 18 (8) 1235-1241
  • 69 García-Castillo M, Del Campo R, Morosini MI , et al. Wide dispersion of ST175 clone despite high genetic diversity of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical strains in 16 Spanish hospitals. J Clin Microbiol 2011; 49 (8) 2905-2910
  • 70 Cholley P, Thouverez M, Hocquet D, van der Mee-Marquet N, Talon D, Bertrand X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol 2011; 49 (7) 2578-2583
  • 71 Yoo JS, Yang JW, Kim HM , et al. Dissemination of genetically related IMP-6-producing multidrug-resistant Pseudomonas aeruginosa ST235 in South Korea. Int J Antimicrob Agents 2012; 39 (4) 300-304
  • 72 Edelstein MV, Skleenova EN, Shevchenko OV , et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis 2013; 13 (10) 867-876
  • 73 Jackson GG, Riff LJ. Pseudomonas bacteremia: pharmacologic and other bases for failure of treatment with gentamicin. J Infect Dis 1971; 124 (Suppl): S185-S191
  • 74 Siegman-Igra Y, Ravona R, Primerman H, Giladi M. Pseudomonas aeruginosa bacteremia: an analysis of 123 episodes, with particular emphasis on the effect of antibiotic therapy. Int J Infect Dis 1998; 2 (4) 211-215
  • 75 Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 2005; 49 (4) 1306-1311
  • 76 Lodise Jr TP, Patel N, Kwa A , et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 2007; 51 (10) 3510-3515
  • 77 Osih RB, McGregor JC, Rich SE , et al. Impact of empiric antibiotic therapy on outcomes in patients with Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2007; 51 (3) 839-844
  • 78 Tumbarello M, Repetto E, Trecarichi EM , et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect 2011; 139 (11) 1740-1749
  • 79 Chatzinikolaou I, Abi-Said D, Bodey GP, Rolston KV, Tarrand JJ, Samonis G. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: Retrospective analysis of 245 episodes. Arch Intern Med 2000; 160 (4) 501-509
  • 80 Chamot E, Boffi El Amari E, Rohner P, Van Delden C. Effectiveness of combination antimicrobial therapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2003; 47 (9) 2756-2764
  • 81 Vidal F, Mensa J, Almela M , et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch Intern Med 1996; 156 (18) 2121-2126
  • 82 Lodise Jr TP, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 2007; 44 (3) 357-363
  • 83 Dulhunty JM, Roberts JA, Davis JS , et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis 2013; 56 (2) 236-244
  • 84 Taccone FS, Cotton F, Roisin S, Vincent JL, Jacobs F. Optimal meropenem concentrations to treat multidrug-resistant Pseudomonas aeruginosa septic shock. Antimicrob Agents Chemother 2012; 56 (4) 2129-2131
  • 85 Koch-Weser J, Sidel VW, Federman EB, Kanarek P, Finer DC, Eaton AE. Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med 1970; 72 (6) 857-868
  • 86 Falagas ME, Rafailidis PI, Ioannidou E , et al. Colistin therapy for microbiologically documented multidrug-resistant Gram-negative bacterial infections: a retrospective cohort study of 258 patients. Int J Antimicrob Agents 2010; 35 (2) 194-199
  • 87 Paul M, Bishara J, Levcovich A , et al. Effectiveness and safety of colistin: prospective comparative cohort study. J Antimicrob Chemother 2010; 65 (5) 1019-1027
  • 88 Park JH, Choi SH, Chung JW. The impact of early adequate antimicrobial therapy on 14-day mortality in patients with monomicrobial Pseudomonas aeruginosa and Acinetobacter baumannii bacteremia. J Infect Chemother 2013; 19 (5) 843-849
  • 89 Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents 2009; 34 (2) 111-120
  • 90 Dinh A, Salomon J, Bru JP, Bernard L. Fosfomycin: efficacy against infections caused by multidrug-resistant bacteria. Scand J Infect Dis 2012; 44 (3) 182-189
  • 91 Pontikis K, Karaiskos I, Bastani S , et al. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria. Int J Antimicrob Agents 2014; 43 (1) 52-59
  • 92 Roussos N, Karageorgopoulos DE, Samonis G, Falagas ME. Clinical significance of the pharmacokinetic and pharmacodynamic characteristics of fosfomycin for the treatment of patients with systemic infections. Int J Antimicrob Agents 2009; 34 (6) 506-515
  • 93 Klastersky J, Cappel R, Daneau D. Therapy with carbenicillin and gentamicin for patients with cancer and severe infections caused by gram-negative rods. Cancer 1973; 31 (2) 331-336
  • 94 Schimpff SC, Gaya H, Klastersky J, Tattersall MH, Zinner SH. Three antibiotic regimens in the treatment of infection in febrile granulocytopenic patients with cancer. The EORTC international antimicrobial therapy project group. J Infect Dis 1978; 137 (1) 14-29
  • 95 Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA, Muder RR. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med 1989; 87 (5) 540-546
  • 96 Bliziotis IA, Petrosillo N, Michalopoulos A, Samonis G, Falagas ME. Impact of definitive therapy with beta-lactam monotherapy or combination with an aminoglycoside or a quinolone for Pseudomonas aeruginosa bacteremia. PLoS ONE 2011; 6 (10) e26470
  • 97 Bowers DR, Liew YX, Lye DC, Kwa AL, Hsu LY, Tam VH. Outcomes of appropriate empiric combination versus monotherapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2013; 57 (3) 1270-1274
  • 98 Peña C, Suarez C, Ocampo-Sosa A , et al; Spanish Network for Research in Infectious Diseases (REIPI). Effect of adequate single-drug vs combination antimicrobial therapy on mortality in Pseudomonas aeruginosa bloodstream infections: a post Hoc analysis of a prospective cohort. Clin Infect Dis 2013; 57 (2) 208-216
  • 99 Hu Y, Li L, Li W , et al. Combination antibiotic therapy versus monotherapy for Pseudomonas aeruginosa bacteraemia: a meta-analysis of retrospective and prospective studies. Int J Antimicrob Agents 2013; 42 (6) 492-496
  • 100 Lingscheid T, Tobudic S, Poeppl W, Mitteregger D, Burgmann H. In vitro activity of doripenem plus fosfomycin against drug-resistant clinical blood isolates. Pharmacology 2013; 91 (3-4) 214-218
  • 101 He W, Kaniga K, Lynch AS, Flamm RK, Davies TA. In vitro Etest synergy of doripenem with amikacin, colistin, and levofloxacin against Pseudomonas aeruginosa with defined carbapenem resistance mechanisms as determined by the Etest method. Diagn Microbiol Infect Dis 2012; 74 (4) 417-419
  • 102 Traugott KA, Echevarria K, Maxwell P, Green K, Lewis II JS. Monotherapy or combination therapy? The Pseudomonas aeruginosa conundrum. Pharmacotherapy 2011; 31 (6) 598-608
  • 103 Siqueira VL, Cardoso RF, Caleffi-Ferracioli KR , et al. Structural changes and differentially expressed genes in Pseudomonas aeruginosa exposed to meropenem-ciprofloxacin combination. Antimicrob Agents Chemother 2014; 58 (7) 3957-3967
  • 104 Louie A, Grasso C, Bahniuk N , et al. The combination of meropenem and levofloxacin is synergistic with respect to both Pseudomonas aeruginosa kill rate and resistance suppression. Antimicrob Agents Chemother 2010; 54 (6) 2646-2654
  • 105 Drusano GL, Bonomo RA, Bahniuk N , et al. Resistance emergence mechanism and mechanism of resistance suppression by tobramycin for cefepime for Pseudomonas aeruginosa. Antimicrob Agents Chemother 2012; 56 (1) 231-242
  • 106 Kumar A, Zarychanski R, Light B , et al; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med 2010; 38 (9) 1773-1785
  • 107 Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 2010; 38 (8) 1651-1664
  • 108 Paul M, Carmeli Y, Durante-Mangoni E , et al. Combination therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother 2014; 69 (9) 2305-2309
  • 109 Aarts MA, Hancock JN, Heyland D, McLeod RS, Marshall JC. Empiric antibiotic therapy for suspected ventilator-associated pneumonia: a systematic review and meta-analysis of randomized trials. Crit Care Med 2008; 36 (1) 108-117
  • 110 Kollef MH, Morrow LE, Niederman MS , et al. Clinical characteristics and treatment patterns among patients with ventilator-associated pneumonia. Chest 2006; 129 (5) 1210-1218
  • 111 Louie A, Liu W, Fikes S, Brown D, Drusano GL. Impact of meropenem in combination with tobramycin in a murine model of Pseudomonas aeruginosa pneumonia. Antimicrob Agents Chemother 2013; 57 (6) 2788-2792
  • 112 Fish DN, Kiser TH. Correlation of pharmacokinetic/pharmacodynamic-derived predictions of antibiotic efficacy with clinical outcomes in severely ill patients with Pseudomonas aeruginosa pneumonia. Pharmacotherapy 2013; 33 (10) 1022-1034
  • 113 Kollef MH, Chastre J, Clavel M , et al. A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit Care 2012; 16 (6) R218
  • 114 Chastre J, Wolff M, Fagon JY , et al; PneumA Trial Group. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 2003; 290 (19) 2588-2598
  • 115 Pugh R, Grant C, Cooke RP, Dempsey G. Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst Rev 2011; (10) CD007577
  • 116 Florescu DF, Qiu F, McCartan MA, Mindru C, Fey PD, Kalil AC. What is the efficacy and safety of colistin for the treatment of ventilator-associated pneumonia? A systematic review and meta-regression. Clin Infect Dis 2012; 54 (5) 670-680
  • 117 Rigatto MH, Ribeiro VB, Konzen D, Zavascki AP. Comparison of polymyxin B with other antimicrobials in the treatment of ventilator-associated pneumonia and tracheobronchitis caused by Pseudomonas aeruginosa or Acinetobacter baumannii. Infection 2013; 41 (2) 321-328
  • 118 Lu Q, Yang J, Liu Z, Gutierrez C, Aymard G, Rouby JJ. Nebulized Antibiotics Study Group. Nebulized ceftazidime and amikacin in ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Am J Respir Crit Care Med 2011; 184 (1) 106-115
  • 119 Li Z, Zhang Y, Wurtz W , et al. Characterization of nebulized liposomal amikacin (Arikace) as a function of droplet size. J Aerosol Med Pulm Drug Deliv 2008; 21 (3) 245-254
  • 120 Ratjen F, Rietschel E, Kasel D , et al. Pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J Antimicrob Chemother 2006; 57 (2) 306-311
  • 121 Korbila IP, Michalopoulos A, Rafailidis PI, Nikita D, Samonis G, Falagas ME. Inhaled colistin as adjunctive therapy to intravenous colistin for the treatment of microbiologically documented ventilator-associated pneumonia: a comparative cohort study. Clin Microbiol Infect 2010; 16 (8) 1230-1236
  • 122 Naesens R, Vlieghe E, Verbrugghe W, Jorens P, Ieven M. A retrospective observational study on the efficacy of colistin by inhalation as compared to parenteral administration for the treatment of nosocomial pneumonia associated with multidrug-resistant Pseudomonas aeruginosa. BMC Infect Dis 2011; 11: 317
  • 123 Michalopoulos A, Fotakis D, Virtzili S , et al. Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant Gram-negative bacteria: a prospective study. Respir Med 2008; 102 (3) 407-412
  • 124 Kofteridis DP, Alexopoulou C, Valachis A , et al. Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case-control study. Clin Infect Dis 2010; 51 (11) 1238-1244
  • 125 Lu Q, Luo R, Bodin L , et al; Nebulized Antibiotics Study Group. Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology 2012; 117 (6) 1335-1347
  • 126 Rattanaumpawan P, Lorsutthitham J, Ungprasert P, Angkasekwinai N, Thamlikitkul V. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria. J Antimicrob Chemother 2010; 65 (12) 2645-2649