Semin Speech Lang 2006; 27(4): 236-244
DOI: 10.1055/s-2006-955114
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Respiratory Muscle Strength Training: Functional Outcomes versus Plasticity

Christine M. Sapienza1 , 2 , Karen Wheeler3
  • 1Department of Communication Sciences and Disorders, University of Florida, Gainesville, FL
  • 2Malcom Randall V.A. Medical Center, Brain Rehabilitation and Research Center, Gainesville, FL
  • 3Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona
Further Information

Publication History

Publication Date:
21 November 2006 (online)

Abstract

Respiratory muscle strength training is a paradigm that has been used for numerous years with a variety of populations including but not limited to spinal cord injury, chronic obstructive pulmonary disease, multiple sclerosis, Parkinson's disease, voice disordered, sedentary elderly, and healthy young. The respiratory muscle strength program discussed here is an expiratory muscle strength training and uses a pressure threshold device with a regimented treatment protocol. The primary purpose of the expiratory muscle strength training program is to promote strength in the expiratory muscles. The training protocol occurs five times per day, 5 days a week, and consists of ~15-20 minutes per day of training by the user at home. The device threshold is changed weekly by a clinician to maintain a threshold load of 75% of an individual's maximum expiratory pressure. The threshold setting of the device is always based on the individual's recorded maximum expiratory pressure generated into a digital pressure gauge. Results of 4 weeks of expiratory muscle strength training protocols indicate up to a 50% improvement for healthy subjects,[1] those with multiple sclerosis,[2] and those with spinal cord injury.[3] The potential transfer of expiratory muscle strength to functional outcomes is discussed, as well as how strength-training paradigms may influence cortical plasticity.

REFERENCES

  • 1 Baker S, Davenport P, Sapienza C. Examination of strength training and detraining effects in expiratory muscles.  J Speech Lang Hear Res. 2005;  48(6) 1325-1333
  • 2 Chiara T, Martin A D, Davenport P W, Bolser D C. Expiratory muscle strength training in persons with multiple sclerosis having mild to moderate disability: effect on maximal expiratory pressure, pulmonary function, and maximal voluntary cough.  Arch Phys Med Rehabil. 2006;  87(4) 468-473
  • 3 Fitsimones L B, Davenport P W, Sapienza C M. Expiratory muscle strength training in low cervical/high thoracic spinal cord injury.  Am J Respir Crit Care Med. 2004;  167(7)
  • 4 Beckerman M, Magadle R, Weiner M, Weiner P. The effects of 1 year of specific inspiratory muscle training in patients with COPD.  Chest. 2005;  128(5) 3177-3182
  • 5 Powers S K, Howley E T. Exercise Physiology: Theory and Application to Fitness and Performance. 5th ed. New York; McGraw Hill 2004
  • 6 Mizuno M. Human respiratory muscles: fibre morphology and capillary supply.  Eur Respir J. 1991;  4(5) 587-601
  • 7 Fiatarone M A, Ryan N D, Clements K M et al.. Exercise training and nutritional supplementation for physical frailty in very elderly people.  N Engl J Med. 1994;  330 1769-1775
  • 8 Brown A BMN, Sale D G. Positive adaptations to weight-lifting in the elderly.  J Appl Physiol. 1990;  69(5) 1725-1733
  • 9 Tzelepis G E, Vega D L, Cohen M E, McCool F D. Lung volume specificity of inspiratory muscle training.  J Appl Physiol. 1994;  77(2) 789-794
  • 10 Bach J R, Zhitnikov S. The management of neuromuscular ventilatory failure.  Semin Pediatr Neurol. 1998;  5(2) 92-105
  • 11 Belman M J. Exercise in patients with chronic obstructive pulmonary disease.  Thorax. 1993;  48(9) 936-946
  • 12 Nickerson B G, Keens T G. Measuring ventilatory muscle endurance in humans as sustainable inspiratory pressure.  J Appl Physiol. 1982;  52(3) 768-772
  • 13 Simpson L S. Effect of increased abdominal muscle strength on forced vital capacity and forced expiratory volume.  Phys Ther. 1983;  63(3) 334-337
  • 14 Deboeck G, Moraine J J, Naeije R. Respiratory muscle strength may explain hypoxia-induced decrease in vital capacity.  Med Sci Sports Exerc. 2005;  37(5) 754-758
  • 15 Koessler W, Wanke T, Winkler G et al.. 2 years' experience with inspiratory muscle training in patients with neuromuscular disorders.  Chest. 2001;  120(3) 765-769
  • 16 Kim J. Physiological Effects of Expiratory Muscle Strength Training With the Sedentary Elderly: Pulmonary, Cough, Swallow and Speech Functions. Gainesville, FL; Department of Communication Sciences and Disorders, University of Florida 2006
  • 17 Arora N S, Gal T J. Cough dynamics during progressive expiratory muscle weakness in healthy curarized subjects.  J Appl Physiol. 1981;  51(2) 494-498
  • 18 Isshiki N. Regulatory mechanism of voice intensity variation.  J Speech Hear Res. 1964;  128 17-29
  • 19 Scherer R C, Vail V J, Guo C G. Required number of tokens to determine representative voice perturbation values.  J Speech Hear Res. 1995;  38(6) 1260-1269
  • 20 Scherer K R. Expression of emotion in voice and music.  J Voice. 1995;  9(3) 235-248
  • 21 Putnam A HB, Hixon T J. Respiratory kinematics in speakers with motor neuron disease. In: Hixon TJ Respiratory Function in Speech and Song. San Diego CA; Singular 1991: 281-310
  • 22 Martin-Harris B, Brodsky M B, Price C C, Michel Y, Walters B. Temporal coordination of pharyngeal and laryngeal dynamics with breathing during swallowing: single liquid swallows.  J Appl Physiol. 2003;  94(5) 1735-1743
  • 23 Gross R D, Mahlmann J, Grayhack J P. Physiologic effects of open and closed tracheostomy tubes on the pharyngeal swallow.  Ann Otol Rhinol Laryngol. 2003;  112(2) 143-152
  • 24 Miller A J. The search for the central swallowing pathway: the quest for clarity.  Dysphagia. 1993;  8(3) 185-194
  • 25 Mitchell R A, Berger A J. Neural regulation of respiration.  Am Rev Respir Dis. 1975;  111(2) 206-224
  • 26 Schultz J L, Perlman A L, VanDaele D J. Laryngeal movement, oropharyngeal pressure, and submental muscle contraction during swallowing.  Arch Phys Med Rehabil. 1994;  75(2) 183-188
  • 27 Shin T, Maeyama T, Morikawa I, Umezaki T. Laryngeal reflex mechanism during deglutition-observation of subglottal pressure and afferent discharge.  Otolaryngol Head Neck Surg. 1988;  99(5) 465-471
  • 28 Shaker R, Dua K S, Ren J, Xie P, Funahashi A, Schapira R M. Vocal cord closure pressure during volitional swallow and other voluntary tasks.  Dysphagia. 2002;  17(1) 13-18
  • 29 Gross R D, Atwood Jr C W, Grayhack J P, Shaiman S. Lung volume effects on pharyngeal swallowing physiology.  J Appl Physiol. 2003;  95(6) 2211-2217
  • 30 Shaker R, Easterling C, Kern M et al.. Rehabilitation of swallowing by exercise in tube-fed patients with pharyngeal dysphagia secondary to abnormal UES opening.  Gastroenterology. 2002;  122(5) 1314-1321
  • 31 Wheeler K M, Chiara T, Sapienza C M. Surface electromyographic activity of the submental muscles during swallowing and during expiratory pressure threshold training tasks. Dysphagia 2006 In press
  • 32 Kuehn D P, Moon J B. Levator veli palatini muscle activity in relation to intraoral air pressure variation.  J Speech Hear Res. 1994;  37(6) 1260-1270
  • 33 Wheeler K. Comparison of Normal Discrete Swallows, Mendelsohn Maneuver, Effortful Swallow, and Expiratory Pressure Threshold Tasks in Healthy Adults [Dissertation]. University of Florida 2006
  • 34 Chen H, Zhang S M, Schwarzschild M A, Hernan M A, Ascherio A. Physical activity and the risk of Parkinson disease.  Neurology. 2005;  64(4) 664-669
  • 35 Kleim J A, Jones T A, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury.  Neurochem Res. 2003;  28(11) 1757-1769
  • 36 Grossman A W, Churchill J D, Bates K E, Kleim J A, Greenough W T. A brain adaptation view of plasticity: is synaptic plasticity an overly limited concept?.  Prog Brain Res. 2002;  138 91-108
  • 37 Monfils M H, Plautz E J, Kleim J A. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience.  Neuroscientist. 2005;  11(5) 471-483
  • 38 Kleim J A, Hogg T M, VandenBerg P M, Cooper N R, Bruneau R, Remple M. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning.  J Neurosci. 2004;  24(3) 628-633
  • 39 Kleim J A, Cooper N R, VandenBerg P M. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex.  Brain Res. 2002;  934(1) 1-6
  • 40 Remple M S, Bruneau R M, VandenBerg P M, Goertzen C, Kleim J A. Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization.  Behav Brain Res. 2001;  123(2) 133-141
  • 41 Kleim J A, Swain R A, Armstrong K A, Napper R M, Jones T A, Greenough W T. Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning.  Neurobiol Learn Mem. 1998;  69(3) 274-289
  • 42 Kleim J A, Barbay S, Cooper N R et al.. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex.  Neurobiol Learn Mem. 2002;  77(1) 63-77
  • 43 Kleim J A, Chan S, Pringle E et al.. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex.  Nat Neurosci. 2006;  9 735-737
  • 44 Federmeier K D, Kleim J A, Greenough W T. Learning-induced multiple synapse formation in rat cerebellar cortex.  Neurosci Lett. 2002;  332(3) 180-184
  • 45 Dodds W J, Stewart E T, Logemann J A. Physiology and radiology of the normal oral and pharyngeal phases of swallowing.  AJR Am J Roentgenol. 1990;  154(5) 953-963
  • 46 Donner M W. Radiologic evaluation of swallowing.  Am Rev Respir Dis. 1985;  131(5) S20-S23
  • 47 Doty R W, Bosma J F. An electromyographic analysis of reflex deglutition.  J Neurophysiol. 1956;  19(1) 44-60
  • 48 Logemann J A, Pauloski B R, Rademaker A W, Colangelo L A, Kahrilas P J, Smith C H. Temporal and biomechanical characteristics of oropharyngeal swallow in younger and older men.  J Speech Lang Hear Res. 2000;  43(5) 1264-1274
  • 49 Perlman A L, Palmer P M, McCulloch T M, Vandaele D J. Electromyographic activity from human laryngeal, pharyngeal, and submental muscles during swallowing.  J Appl Physiol. 1999;  86(5) 1663-1669
  • 50 Spiro J, Rendell J K, Gay T. Activation and coordination patterns of the suprahyoid muscles during swallowing.  Laryngoscope. 1994;  104(11 Pt 1) 1376-1382
  • 51 Powers S K, Demirel H A, Coombes J S et al.. Myosin phenotype and bioenergetic characteristics of rat respiratory muscles.  Med Sci Sports Exerc. 1997;  29(12) 1573-1579
  • 52 Coyle E F, Martin III W H, Sinacore D R, Joyner M J, Hagberg J M, Holloszy J O. Time course of loss of adaptations after stopping prolonged intense endurance training.  J Appl Physiol. 1984;  57(6) 1857-1864
  • 53 Dudley G A, Tesch P A, Miller B J, Buchanan P. Importance of eccentric actions in performance adaptations to resistance training.  Aviat Space Environ Med. 1991;  62(6) 543-550
  • 54 Hortobagyi T, Houmard J A, Stevenson J R, Fraser D D, Johns R A, Israel R G. The effects of detraining on power athletes.  Med Sci Sports Exerc. 1993;  25(8) 929-935
  • 55 Mujika I, Padilla S. Cardiorespiratory and metabolic characteristics of detraining in humans.  Med Sci Sports Exerc. 2001;  33(3) 413-421
  • 56 Romer L M, McConnell A K. Specificity and reversibility of inspiratory muscle training.  Med Sci Sports Exerc. 2003;  35(2) 237-244
  • 57 Gosselink R, Kovacs L, Ketelaer P, Carton H, Decramer M. Respiratory muscle weakness and respiratory muscle training in severely disabled multiple sclerosis patients.  Arch Phys Med Rehabil. 2000;  81(6) 747-751

Christine SapienzaPh.D. 

Department of Communication Sciences and Disorders

336 Dauer Hall, University of Florida, Gainesville, FL 32611

Email: sapienza@csd.ufl.edu

    >