Skip to main content
Log in

Transport Phenomena in the Human Nasal Cavity: A Computational Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Nasal inspiration is important for maintaining the internal milieu of the lung, since ambient air is conditioned to nearly alveolar conditions (body temperature and fully saturated with water vapor) on reaching the nasopharynx. We conducted a two-dimensional computational study of transport phenomena in model transverse cross sections of the nasal cavity of normal and diseased human noses for inspiration under various ambient conditions. The results suggest that during breathing via the normal human nose there is ample time for heat and water exchange to enable equilibration to near intraalveolar conditions. A normal nose can maintain this equilibrium under extreme environments (e.g., hot/humid, cold/dry, cold/humid). The turbinates increase the rate of local heat and moisture transport by narrowing the passageways for air and by induction of laminar swirls downstream of the turbinate wall. However, abnormal blood supply or mucous generation may reduce the rate of heat or moisture flux into the inspired air, and thereby affect the efficacy of the process. © 1998 Biomedical Engineering Society.

PAC98: 8745Hw, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Cole, P. Some aspects of temperature, moisture and heat relationships in the upper respiratory tract. J. Laryngol. Otol.67:449-456, 1953.

    Google Scholar 

  2. Cole, P. Further consideration on the conditioning of respiratory air. J. Laryngol. Otol.67:669-681, 1953.

    Google Scholar 

  3. Daviskas, E., I. Gonda, and S. D. Anderson. Mathematical modeling of heat and water transport in human respiratory tract. J. Appl. Physiol.69:362-372, 1990.

    Google Scholar 

  4. Drettner, B., B. Flack, and H. Simon. Measurements of air conditioning capacity of the nose during normal and pathological conditions and pharmacological influence. Acta Oto-Laryngol.84:266-277, 1977.

    Google Scholar 

  5. Elad, D., R. Liebenthal, B. L. Wenig, and S. Einav. Computer simulated air flow patterns in the human nose. Med. Biol. Eng. Comput.31:685-592, 1993.

    Google Scholar 

  6. Farley, R. D., and K. R. Patel. Comparison of air warming in human airway with thermodynamic model. Med. Biol. Eng. Comput.26:628-632, 1988.

    Google Scholar 

  7. Ferron, G. A., B. Haider, and W. G. Kreyling. A method for the approximation of the relative humidity in the upper human airway. Bull. Math. Biol.47:565-589, 1985.

    Google Scholar 

  8. Fox, E., R. Bowers, and M. Foss. The Physiological Basis for Exercise and Sport. Madison, WI: Brown & Benchmark, 1993.

    Google Scholar 

  9. Girardin, M., E. Bilgen, and P. Arbour. Experimental study of velocity fields in a human nasal fossa by laser anemometry. Ann. Otol. Rhinol. Laryngol.92:231-236, 1983.

    Google Scholar 

  10. Hahn, I., P. W. Scherer, and M. M. Mozell. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J. Appl. Physiol.75:2273-2287, 1993.

    Google Scholar 

  11. Hahn, I., P. W. Scherer, and M. M. Mozell. A mass transfer model of olfaction. J. Theor. Biol.167:115-128, 1994.

    Google Scholar 

  12. Hanna, L. M., and P. W. Scherer. Measurement of local mass transfer coefficients in a cast model of the human upper respiratory tract. J. Biomech. Eng.108:12-18, 1986.

    Google Scholar 

  13. Hanna, L. M., and P. W. Scherer. A theoretical model of localized heat and water vapor transport in the human respiratory tract. J. Biomech. Eng.108:19-27, 1986.

    Google Scholar 

  14. Ingelstedt, S. Studies on conditioning of air in the respiratory tract. Acta Oto-Laryngol. Suppl.131:1-80, 1956.

    Google Scholar 

  15. Keyhani, K., P. W. Scherer, and M. M. Mozell. Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng.117:429-441, 1995.

    Google Scholar 

  16. Lang, J. Clinical Anatomy of the Nose, Nasal Cavity and Paranasal Sinuses. New York: Thiem Medical, 1989.

    Google Scholar 

  17. Maran, A. G. D., and V. J. Lund. Clinical Rhinology. New York: Thieme Medical, 1990.

    Google Scholar 

  18. McFadden, E. R. Respiratory heat and water exchange: Physiological and clinical implications. J. Appl. Physiol.54:331-336, 1983.

    Google Scholar 

  19. Morris, I. R. Functional anatomy of the upper airway. Emerg. Med. Clin. North Am.6:639-669, 1988.

    Google Scholar 

  20. Nuckols, M. L., J. L. Zumrick, and C. E. Johnson. Heat and water vapor transport in the human upper airways at hyperbaric conditions. J. Biomech. Eng.105:24-30, 1983.

    Google Scholar 

  21. Olek, S. Personal communications.

  22. Primiano, Jr., F. P., G. M. Saidel, F. W. Montague, K. L. Kruse, C. G. Green, and J. G. Horowitz. Water vapor and temperature dynamics in the upper airways of normal and CF subjects. Eur. Respir. J.1:407-414, 1988.

    Google Scholar 

  23. Proctor, D. F., and D. L. Swift. Temperature and water vapor adjustment. In: Respiratory Defense Mechanisms (Part I), edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Marcel Dekker, 1977, pp. 95-124.

    Google Scholar 

  24. Proctor, D. F., and I. Anderson. The Nose, Upper Airway Physiology and the Atmospheric Environment. Amsterdam: Elsevier Biomedical, 1982.

    Google Scholar 

  25. Saidel, G. M., K. L. Kruse, and F. P. Primiano, Jr. Model simulation of heat and water transport dynamics in an airway. J. Biomech. Eng.105:188-193, 1983.

    Google Scholar 

  26. Scherer, P. W., and L. M. Hanna. Heat and water transport in the human respiratory system. In: Heat Transfer in Biological Systems: Analysis and Applications, edited by R. C. Eberhart and A. Shitzer. New York: Plenum, 1985, pp. 287-306.

    Google Scholar 

  27. Schreck, S., K. J. Sullivan, C. M. Ho, and H. K. Chang. Correlations between flow resistance and geometry in a model of the human nose. J. Appl. Physiol.75:1767-1775, 1993.

    Google Scholar 

  28. Schroter, R. C., and N. V. Watkins. Respiratory heat exchange in mammals. Respir. Physiol.78:357-368, 1989.

    Google Scholar 

  29. Tsai, C. L., G. M. Saidal, E. R. McFadden, and J. M. Fouke. Radial heat and water transport across the airway wall. J. Appl. Physiol.69:222-231, 1990.

    Google Scholar 

  30. Webb, P. Air temperatures in respiratory tracts of resting subjects. J. Appl. Physiol.4:378-382, 1951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naftali, S., Schroter, R.C., Shiner, R.J. et al. Transport Phenomena in the Human Nasal Cavity: A Computational Model. Annals of Biomedical Engineering 26, 831–839 (1998). https://doi.org/10.1114/1.108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.108

Navigation