Skip to main content
Log in

How Heterogeneous Bronchoconstriction Affects Ventilation Distribution in Human Lungs: A Morphometric Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Convective dependent flow heterogeneities associated with airways proximal to the acini are the dominant cause of abnormal ventilation distribution during induced bronchoconstriction (Verbanck, S., D. Schuermans, A. Van Muylem, M. Paira, M. Noppen, and W. Vincken. Ventilation distribution during histamine provocation. J. Appl. Physiol. 83:1907–1916, 1997). We applied a morphometric model of the human lung to predict flow distributions among the acini during heterogeneous bronchoconstriction and relate these distributions to impairments in the mechanical properties of the lung. The model has an asymmetrical branching airway system. Heterogeneous constriction was invoked by defining an airway constriction distribution with a mean (μ) and coefficient of variation (CV) and either a Gaussian or log normal distribution. The lung resistance (R L ) and elastance E L were most sensitive to severely heterogeneous constriction that produced a few highly constricted or closed airways dispersed randomly throughout the periphery. Ventilation distribution in the healthy lung was effectively homogeneous over the frequency range of 0.1–5.0 Hz. With homogeneous or mildly heterogeneous constriction (CV⩽20%) ventilation remained fairly homogeneous at low frequencies (≤0.1 Hz) but rapidly became heterogeneous as frequency increased. Conversely, a low mean but severely heterogeneous constriction that produced random airway closure produced abnormal ventilation distribution in most acini at all frequencies, and some acini received up to 25 times the normal ventilation. This suggests that certain forms of heterogeneity can lead to shear induced lung injury even at common mechanical ventilation rates. © 1999 Biomedical Engineering Society.

PAC99: 8710+e, 8719Uv, 8719Rr

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Barnas, G. M., D. N. Campbell, C. F. Mackenzie, J. E. Mendham, B. G. Fahy, C. J. Runcie, and G. E. Mendham. Lung, chest wall, and total respiratory system resistances and elastances in the normal range of breathing. Am. Rev. Respir. Dis. 145:110–113, 1992.

    Google Scholar 

  2. Guy, H. J. B., G. K. Prisk, A. R. Elliot, R. A. Deutschman, III, and J. B. West. Inhomogeneity of pulmonary ventilation during sustained microgravity as determined by single-breath washouts. J. Appl. Physiol. 76:1719–1729, 1994.

    Google Scholar 

  3. Habib, R. H., R. B. Chalker, B. Suki, and A. C. Jackson. Airway geometry and wall mechanical properties estimated from subglottal input impedance in humans. J. Appl. Physiol. 77:441–451, 1994.

    Google Scholar 

  4. Hantos, Z., B. Daróczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 72:168–178, 1992.

    Google Scholar 

  5. Horsfield, K., G. Dart, D. E. Olson, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol. 31:207–217, 1971.

    Google Scholar 

  6. Hubmayr, R. D., M. J. Hill, and T. A. Wilson. Nonuniform expansion of constricted dog lungs. J. Appl. Physiol. 80:522–530, 1996.

    Google Scholar 

  7. Kaczka, D. W., E. P. Ingenito, E. Israel, and K. R. Lutchen, Am. J. Respir. Crit. Care Med. (in press).

  8. Kaczka, D. W., E. P. Ingenito, B. Suki, and K. R. Lutchen. Partitioning airway and lung tissue resistance in humans: effects of bronchoconstriction. J. Appl. Physiol. 82:1531–1541, 1997.

    Google Scholar 

  9. Kuwano, K., C. H. Bosken, P. D. Pare, T. R. Bai, B. R. Wiggs, and J. C. Hogg. Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 148:1220–5, 1993.

    Google Scholar 

  10. Lutchen, K. R., and H. L. Gillis. The relation between airway morphometry and lung resistance and elastance during constriction: a modeling study. J. Appl. Physiol. 83:1192–1201, 1997.

    Google Scholar 

  11. Lutchen, K. R., J. L. Greenstein, and B. Suki. How inhomogeneities and airway walls affect frequency dependence and separation of airway and tissue properties. J. Appl. Physiol. 80:1696–1707, 1996.

    Google Scholar 

  12. Lutchen, K. R., E. P. Ingenito, and D. W. Kaczka. Impact of deep inspiration on induced versus spontaneous airway constriction ~abstract!. Am. J. Respir. Crit. Care Med. 157:A517, 1998.

    Google Scholar 

  13. Lutchen, K. R., G. M. Saidel, F. P. Primiano, Jr., J. G. Horowitz, and E. Chandler Deal, Jr. Mechanics and gas distribution in normal and obstructed lungs during tidal breathing. Am. Rev. Respir. Dis. 130:974–979, 1984.

    Google Scholar 

  14. Lutchen, K. R., B. Suki, Q. Zhang, F. Peták, B. Daróczy, and Z. Hantos. Airway and tissue mechanics during physiological breathing and bronchoconstriction in dogs. J. Appl. Physiol. 77:373–385, 1994.

    Google Scholar 

  15. MacIntyre, N. R. Mechanical ventilatory support. In: Textbook of Pulmonary Diseases, 6th ed., edited by G. L. Baum, J. D. Crapo, B. R. Celli, and J. B. Karlinsky. Philadelphia: Lippincott-Raven, 1998, pp. 941–955.

    Google Scholar 

  16. Macklem, P. T. Bronchial hyporesponsiveness. Chest Suppl. 87:158s-159s, 1985.

    Google Scholar 

  17. Mishima, M., Z. Balassy, and J. H. T. Bates. Acute pulmonary response to intravenous histamine using forced oscillations through alveolar capsules in dogs. J. Appl. Physiol. 77:2140–2148, 1994.

    Google Scholar 

  18. Otis, A. B., C. B. McKerrow, R. A. Bartlett, J. Mead, M. B. McIlroy, N. F. Selverstone, and E. P. Radford. Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol. 8:427–443, 1956.

    Google Scholar 

  19. Prisk, G. K., A. R. Elliot, H. J. B. Guy, S. Verbanck, M. Paiva, and J. B. West. Multiple-breath washin of helium and sulfur hexafluoride in sustained microgravity. J. Appl. Physiol. 84:244–252, 1998.

    Google Scholar 

  20. Prisk, G. K., H. J. B. Guy, A. R. Elliot, M. Paiva, and J. B. West. Ventilation inhomogeneity determined from multiple-breath washouts during sustained microgravity on Spacelab SLS-1. J. Appl. Physiol. 78:597–607, 1995.

    Google Scholar 

  21. Suki, B., R. H. Habib, and A. C. Jackson. Wave propagation, input impedance, and wall mechanics of the calf trachea from 16 to 1,600 Hz. J. Appl. Physiol. 75:2755–2766, 1993.

    Google Scholar 

  22. Verbanck, S., D. Schuermans, A. Van Muylem, M. Paiva, M. Noppen, and W. Vincken. Ventilation distribution during histamine provocation. J. Appl. Physiol. 83:1907–1916, 1997.

    Google Scholar 

  23. Wagner, P. D., and J. B. West. Ventilation-perfusion relationships. In: Pulmonary Gas Exchange, edited by J. B. West. New York: Academic, 1980, pp. 219–262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillis, H.L., Lutchen, K.R. How Heterogeneous Bronchoconstriction Affects Ventilation Distribution in Human Lungs: A Morphometric Model. Annals of Biomedical Engineering 27, 14–22 (1999). https://doi.org/10.1114/1.161

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.161

Navigation