Abstract
BACKGROUND: Training in mechanical ventilation is a key goal in critical care fellowship education. Web-based simulators offer a cost-effective and readily available alternative to traditional on-site simulators. However, it is unclear how effective they are as teaching tools. In this study, we evaluated the test scores of fellows who underwent mechanical ventilation training by using a web-based simulator compared with fellows who used an on-site simulator during a mechanical ventilation course.
METHODS: This was a nonrandomized controlled trial conducted as part of a mechanical ventilation course that involved 70 first-year critical care fellows. The course was identical except for the simulation technology used. One group of instructors used a traditional on-site simulator, the ASL 5000 Lung Solution (n = 39). The second group was instructed in using a web-based simulator, VentSim (n = 31). Each fellow completed a pre-course test and a post-course test by using a validated, case-based ventilator waveform examination that consisted of 5 questions with a total possible score of 100. The primary outcome was a comparison of the mean scores on the posttest between the 2 groups. The study was designed as a non-inferiority trial with a predetermined margin of 10 points.
RESULTS: There was no significant difference in the mean ± SD pretest scores between the web-based and the on-site groups (21.1 ± 12.6 and 26.9 ± 13.6 respectively; P = .11). The mean ± SD posttest scores were 45.6 ± 25.0 for the web-based simulator and 43.4 ± 16.5 for on-site simulator (mean difference 2.2; one-sided 95% CI –7.0 to ∞; Pnon-inferiority = .02 [non-inferiority confirmed]). Changes in mean ± SD scores (posttest – pretest) were 25.9 ± 20.9 for the web-based simulator and 16.5 ± 15.9 for the on-site simulator (mean difference 9.4, one-sided 95% CI 0.9 to ∞; Pnon-inferiority < .001 [non-inferiority confirmed]).
CONCLUSIONS: In the education of first-year critical care fellows on mechanical ventilation waveform analysis, a web-based mechanical ventilation simulator was non-inferior to a traditional on-site mechanical ventilation simulator.
- mechanical ventilation
- education
- simulation
- medical education
Footnotes
- Correspondence: Sami Safadi MD, University of Minnesota, 717 Delaware St SE, Minneapolis, MN 55414. e-mail: safad002{at}umn.edu
Dr Safadi is the creator of the web-based mechanical ventilation simulator that was used in this study. The remaining authors have reported no conflicts of interest.
There are no sources of financial support for this project.
Supplementary material related to this paper is available at http://www.rcjournal.com.
See the Related Editorial on Page 1468
- Copyright © 2024 by Daedalus Enterprises
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$30.00
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.