Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Follow aarc on Twitter
  • Visit aarc on Facebook
Research ArticleConference Proceedings

Should PEEP Titration Be Based on Chest Mechanics in Patients With ARDS?

Richard H Kallet
Respiratory Care June 2016, 61 (6) 876-890; DOI: https://doi.org/10.4187/respcare.04657
Richard H Kallet
Respiratory Care Services, University of California, San Francisco, Department of Anesthesia at San Francisco General Hospital, San Francisco, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Falke KJ,
    2. Pontoppidan H,
    3. Kumar A,
    4. Leith DE,
    5. Geffin B,
    6. Laver MB
    . Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest 1972;51(9):2315–2323.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    1. Suter PM,
    2. Fairley B,
    3. Isenberg MD
    . Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 1975;292(6):284–289.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Ashbaugh DG,
    2. Bigelow DB,
    3. Petty TL,
    4. Levine BE
    . Acute respiratory distress syndrome. Lancet 1967;2(7511):319–323.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Petty TL
    . In the cards was ARDS: how we discovered the acute respiratory distress syndrome. Am J Respir Crit Care Med 2001;163(3):602–603.
    OpenUrlPubMed
  5. 5.↵
    1. McIntyre RW,
    2. Laws AK,
    3. Ramachandran PR
    . Positive end-expiratory pressure plateau: improving gas exchange during mechanical ventilation. Can Anaesth Soc J 1969;16(6):477–486.
    OpenUrlPubMed
  6. 6.↵
    1. Ashbaugh DG,
    2. Petty TL,
    3. Bigelow DB,
    4. Harris TM
    . Continuous positive-pressure breathing in adult respiratory distress syndrome. J Thorac Cardiovasc Surg 1969;57(1):31–41.
    OpenUrlPubMedWeb of Science
  7. 7.↵
    1. Kumar A,
    2. Falke KJ,
    3. Geffin B,
    4. Aldredge CF,
    5. Laver MB,
    6. Lowenstein E,
    7. Pontoppidan H
    . Continuous positive-pressure ventilation in acute respiratory failure. N Engl J Med 1970;283(26):1430–1436.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Lutch JS,
    2. Murray JF
    . Continuous positive-pressure ventilation: Effects on systemic oxygen transport and tissue oxygenation. Ann Intern Med 1972;76(2):193–202.
    OpenUrlPubMedWeb of Science
  9. 9.↵
    1. Petty TL,
    2. Ashbaugh DG
    . The adult respiratory distress syndrome. Clinical features, factors influencing prognosis and principles of management. Chest 1971;60(3):233–239.
    OpenUrlPubMedWeb of Science
  10. 10.↵
    1. Petty TL
    . The use, abuse, and mystique of positive end-expiratory pressure. Am Rev Respir Dis 1988;138(2):475–478.
    OpenUrlPubMed
  11. 11.↵
    1. Harris RS
    . Pressure-volume curves of the respiratory system. Respir Care 2005;50(1):78–98; discussion 98-99.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Suter PM,
    2. Fairley HB,
    3. Isenberg MD
    . Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 1978;73(2):158–162.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Jardin F,
    2. Desfond P,
    3. Bazin M,
    4. Sportiche M,
    5. Margairaz A
    . Controlled ventilation with best positive end-expiratory pressure (PEEP) and high level PEEP in acute respiratory failure (ARF). Intensive Care Med 1981;7(4):171–176.
    OpenUrlPubMed
  14. 14.↵
    1. Dreyfuss D,
    2. Saumon G
    . Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation Am Rev Respir Dis 1993;148(5):1194–1203.
    OpenUrlPubMedWeb of Science
  15. 15.
    1. Kolobow T,
    2. Moretti MP,
    3. Fumagalli R,
    4. Mascheroni D,
    5. Prato P,
    6. Chen V,
    7. Joris M
    . Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation: an experimental study. Am Rev Respir Dis 1987;135(2):312–315.
    OpenUrlPubMedWeb of Science
  16. 16.↵
    1. Gattinoni L,
    2. Pesenti A
    . ARDS: the non-homogeneous lung: facts and hypothesis. Intensive Crit Care Dig 1987;6(1):1–4.
    OpenUrl
  17. 17.↵
    1. Brunet F,
    2. Jeanbourquin D,
    3. Monchi M,
    4. Mira JP,
    5. Fierobe L,
    6. Armaganidis A,
    7. et al
    . Should mechanical ventilation be optimized to blood gases, lung mechanics, or thoracic CT scan. Am J Respir Crit Care Med 1995;152(2):524–530.
    OpenUrlPubMedWeb of Science
  18. 18.↵
    1. Gattinoni L,
    2. Pesenti A
    . The concept of “baby lung”. Intensive Care Med 2005;31(6)776–784.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Molina DK,
    2. DiMaio VJ
    . Normal organ weights in men: part III: the brain, lungs, liver, spleen, and kidneys. Am J Forensic Med Pathol 2012;33(4):368–372.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Webb HH,
    2. Tierney DF
    . Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end expiratory pressure. Am Rev Resir Dis 1974;110(5):556–565.
    OpenUrl
  21. 21.↵
    1. Gattinoni L,
    2. Carlesso,
    3. Cadringher P,
    4. Valenza F,
    5. Vagginelli F,
    6. Chiumello D
    . Physical and biological triggers of ventilator induced lung injury and its prevention. Eur Respir J Suppl 2003;47:15s–25s.
    OpenUrl
  22. 22.↵
    1. Rocco PRM,
    2. Dos Santos C,
    3. Pelosi P
    . Pathophysiology of ventilator-associated lung injury. Curr Opin Anaesthesiol 2012;25(2):123–130.
    OpenUrlPubMed
  23. 23.↵
    1. Amato MBP,
    2. Barbas CSV,
    3. Medeiros DM,
    4. Schettino Gde P,
    5. Lorenzi Filho G,
    6. Kairalla RA,
    7. et al
    . Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 1995;152(6):1835–1846.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Bellani G,
    2. Messa C,
    3. Guerra L,
    4. Spagnolli E,
    5. Foti G,
    6. Patroniti N,
    7. et al
    . Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: a [18F]-fluoro-2-deoxy-d-glucose PET/CT study. Crit Care Med 2009;37(7):2216–2222.
    OpenUrlCrossRefPubMedWeb of Science
  25. 25.↵
    1. Lemaire F,
    2. Simoneau G,
    3. Harf A,
    4. Rivara D,
    5. Teisseire B,
    6. Atlan G,
    7. Rapin M
    . Static pulmonary pressure-volume (P-V) curve, positive end-expiratory pressure (PEEP) ventilation and gas exchange in acute respiratory failure (ARF). Am Rev Respir Dis 1979;119:328.
    OpenUrl
  26. 26.↵
    1. Amato MBP,
    2. Barbas CSV,
    3. Medeiros DM,
    4. Magaldi RB,
    5. Schettino GP,
    6. Lorenzi-Filho G,
    7. et al
    . Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998;338(6):347–354.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Villar J,
    2. Kacmarek RM,
    3. Pérez-Méndez L,
    4. Aguirre-Jaime A
    . A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized controlled trial. Crit Care Med 2006;34(5):1311–1318.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Roupie E,
    2. Dambrosio M,
    3. Servillo G,
    4. Mentec H,
    5. el Atrous S,
    6. Beydon L,
    7. et al
    . Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 1995;152(1):121–128.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Ranieri VM,
    2. Suter PM,
    3. Tortorella C,
    4. De Tullio R,
    5. Dayer JM,
    6. Brienza A,
    7. et al
    . Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999;282(1):54–61.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    The ARDS Clinical Trials Network. A trial of traditional tidal volume versus lower tidal volume ventilation in acute lung injury and acute respiratory distress syndrome. N Engl J Med 2000;342(18):1301–1308.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.↵
    1. Terragni PP,
    2. Rosboch G,
    3. Tealdi A,
    4. Corno E,
    5. Menaldo E,
    6. Davini O,
    7. et al
    . Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2007;175(2):160–166.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.↵
    1. Mols G,
    2. Brandes I,
    3. Kessler V,
    4. Lichtwarck-Aschoff M,
    5. Loop T,
    6. Geiger K,
    7. Guttmann J
    . Volume-dependent compliance in ARDS: proposal of a new diagnostic concept. Intensive Care Med 1999;25(10):1084–1091.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.↵
    1. Ranieri VM,
    2. Zhang H,
    3. Mascia L,
    4. Aubin M,
    5. Lin CY,
    6. Mullen JB,
    7. et al
    . Pressure time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 2000;93(5):1320–1328.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Grasso S,
    2. Terragni P,
    3. Mascia L,
    4. Fanelli V,
    5. Quintel M,
    6. Herrmann P,
    7. et al
    . Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 2004;32(4):1018–1027.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.↵
    1. Grasso S,
    2. Stripoli T,
    3. De Michele M,
    4. Bruno F,
    5. Moschetta M,
    6. Angelelli G,
    7. et al
    . ARDSnet ventilatory protocol and alveolar hyperinflation. Am J Respir Crit Care Med 2007;176(8):761–767.
    OpenUrlCrossRefPubMedWeb of Science
  36. 36.↵
    1. Terragni PP,
    2. Filippini C,
    3. Slutsky AS,
    4. Birocco A,
    5. Tenaglia T,
    6. Grasso S,
    7. et al
    . Accuracy of plateau pressure and stress index to identify injurious ventilation in patients with acute respiratory distress syndrome. Anesthesiology 2013;119(4):880–889.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Vieillard-Baron A,
    2. Schmitt JM,
    3. Augarde R,
    4. Fellahi JL,
    5. Prin S,
    6. Page B,
    7. et al
    . Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications and prognosis. Crit Care Med 2001;29(8):1551–1555.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Ferrando C,
    2. Suárez-Sipmann F,
    3. Gutierrez A,
    4. Tusman G,
    5. Carbonell J,
    6. García M,
    7. et al
    . Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance. Crit Care 2015;19:9.
    OpenUrlPubMed
  39. 39.↵
    1. Talmor D,
    2. Sarge T,
    3. Malhotra A,
    4. O'Donnell CR,
    5. Ritz R,
    6. Lisbon A,
    7. et al
    . Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008;359(20):2095–2104.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.↵
    1. Fish E,
    2. Novack V,
    3. Banner-Goodspeed VM,
    4. Sarge T,
    5. Loring S,
    6. Talmor D
    . The esophageal pressure-guided ventilation 2 (EPVent2) trial protocol: a multicentre, randomized clinical trial of mechanical ventilation guided by transpulmonary pressure. BMJ Open 2014(9);4:e006356.
    OpenUrlAbstract/FREE Full Text
  41. 41.↵
    1. Briel M,
    2. Meade M,
    3. Mercat A,
    4. Brower RG,
    5. Talmor D,
    6. Walter SD,
    7. et al
    . Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome. JAMA 2010;303(9):865–873.
    OpenUrlCrossRefPubMedWeb of Science
  42. 42.↵
    1. Gattinoni L,
    2. D'Andrea L,
    3. Pelosi P,
    4. Vitale G,
    5. Pesenti A,
    6. Fumagalli R
    . Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 1993;269(16):2122–2127.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Martynowicz MA,
    2. Minor TA,
    3. Walters BJ,
    4. Hubmayr RD
    . Regional expansion of the oleic acid-injured lungs. Am J Respir Crit Care Med 1999;160(1):250–258.
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.↵
    1. Martynowicz MA,
    2. Walters BJ,
    3. Hubmayr RD
    . Mechanisms of recruitment in oleic acid-injured lungs. J Appl Physiol 2001;90(5):1744–1753.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Hubmayr RD
    . Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 2002;165(12):1647–1653.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    1. Albert RK
    . Least PEEP: primum non nocere. Chest 1985;87(1):2–4.
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.↵
    1. Stewart TE,
    2. Meade MO,
    3. Cook DJ,
    4. Granton JT,
    5. Hodder RV,
    6. Lapinsky SE,
    7. et al
    . Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. N Engl J Med 1998;338(6):355–361.
    OpenUrlCrossRefPubMedWeb of Science
  48. 48.
    1. Brochard L,
    2. Roudot-Thoraval F,
    3. Roupie E,
    4. Delclaux C,
    5. Chastre J,
    6. Fernandez-Mondéjar E,
    7. et al
    . Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. Am J Respir Crit Care Med 1998;158(6):1831–1838.
    OpenUrlCrossRefPubMedWeb of Science
  49. 49.
    1. Brower RG,
    2. Shanholtz CB,
    3. Fessler HE,
    4. Shade DM,
    5. White P Jr.,
    6. Wiener CM,
    7. et al
    . Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 1999;27(8):1492–1498.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Brower RG,
    2. Lanken PN,
    3. MacIntyre N,
    4. Matthay MA,
    5. Morris A,
    6. Ancukiewicz M,
    7. et al
    . Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004;351(4):327–336.
    OpenUrlCrossRefPubMedWeb of Science
  51. 51.
    1. Wiedemann HP,
    2. Wheeler AP,
    3. Bernard GR,
    4. Thompson BT,
    5. Hayden D,
    6. et al
    National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006;354(24):2564–2575.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.
    1. Meade MO,
    2. Cook DJ,
    3. Guyatt GH,
    4. Slutsky AS,
    5. Arabi YM,
    6. Cooper DJ,
    7. et al
    . Ventilation strategy using low tidal volumes, recruitment maneuvers and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome. JAMA 2008;299(6):637–645.
    OpenUrlCrossRefPubMedWeb of Science
  53. 53.
    1. Truwit JD,
    2. Bernard GR,
    3. Steingrub J,
    4. Matthay MA,
    5. Liu KD,
    6. et al
    National Heart, Lung, and Blood Institute ARDS Clinical Trials Network, Truwit JD, Bernard GR, Steingrub J, Matthay MA, Liu KD, et al. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med 2014;370(23):2191–2200.
    OpenUrlCrossRefPubMedWeb of Science
  54. 54.↵
    1. Mercat A,
    2. Richard JCM,
    3. Vielle B,
    4. Jaber S,
    5. Osman D,
    6. Diehl JL,
    7. et al
    . Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome. JAMA 2008;299(6):646–655.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.↵
    1. Katz JA,
    2. Ozanne GM,
    3. Zinn SE,
    4. Fairley HB
    . Time course and mechanism of lung-volume increases with PEEP in acute pulmonary failure. Anesthesiology 1981;54(1):9–16.
    OpenUrlPubMedWeb of Science
  56. 56.↵
    1. Pelosi P,
    2. Cadringher P,
    3. Bottino N,
    4. Panigada M,
    5. Carrieri F,
    6. Riva E,
    7. et al
    . Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 1999;159(3):872–880.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.↵
    1. Huang Y,
    2. Yang Y,
    3. Chen Q,
    4. Liu S,
    5. Liu L,
    6. Pan C,
    7. et al
    . Pulmonary acute respiratory distress syndrome: positive end-expiratory pressure titration needs stress index. J Surg Res 2013;185(1):347–352.
    OpenUrlPubMed
  58. 58.↵
    1. Amato MB,
    2. Meade MO,
    3. Slutsky AS,
    4. Brochard L,
    5. Costa EL,
    6. Schoenfeld DA,
    7. et al
    . Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372(8):747–755.
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. Ward NS,
    2. Lin DY,
    3. Nelson DL,
    4. Houtchens J,
    5. Schwartz WA,
    6. Klinger JR,
    7. et al
    . Successful determination of lower inflection point and maximal compliance in a population of patients with acute respiratory distress syndrome. Crit Care Med 2002;30(5):963–968.
    OpenUrlCrossRefPubMedWeb of Science
  60. 60.↵
    1. Kallet RH
    . Pressure-volume curves in the management of acute respiratory distress syndrome. Respir Care Clin N Am 2003;9(3):321–341.
    OpenUrlPubMed
  61. 61.↵
    1. Kallet RH,
    2. Branson RD
    . Do the NIH ARDS clinical trials network PEEP/FIO2 tables provide the best evidence-based guide to balancing PEEP and FIO2 settings in adults? Respir Care 2007;52(4):461–475; discussion 475-477.
    OpenUrlAbstract/FREE Full Text
  62. 62.↵
    1. Hickling KG
    . The pressure-volume curve is greatly modified by recruitment: a mathematical model of ARDS lungs. Am J Respir Crit Care Med 1998;158(1):194–202.
    OpenUrlCrossRefPubMedWeb of Science
  63. 63.↵
    1. Mergoni M,
    2. Volpi A,
    3. Bricchi C,
    4. Rossi A
    . Lower inflection point and recruitment with PEEP in ventilated patients with acute respiratory failure. J Appl Physiol 2001;91(1):441–450.
    OpenUrlAbstract/FREE Full Text
  64. 64.↵
    1. Medoff BD,
    2. Harris RS,
    3. Kesselman H,
    4. Venegas J,
    5. Amato MBP,
    6. Hess D
    . Use of recruitment maneuvers and high positive end-expiratory pressure in a patient with acute respiratory distress syndrome. Crit Care Med 2000;28(4):1210–1216.
    OpenUrlCrossRefPubMedWeb of Science
  65. 65.↵
    1. Pelosi P,
    2. Goldner M,
    3. McKibben A,
    4. Adams A,
    5. Eccher G,
    6. Caironi P,
    7. et al
    . Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 2001;164(1):122–130.
    OpenUrlCrossRefPubMedWeb of Science
  66. 66.↵
    1. Crotti S,
    2. Mascheroni D,
    3. Caironi P,
    4. Pelosi P,
    5. Ronzoni G,
    6. Mondino M,
    7. et al
    . Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 2001;164(1):131–140.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.↵
    1. Vieira SRR,
    2. Puybasset L,
    3. Lu Q,
    4. Richecoeur J,
    5. Cluzel P,
    6. Coriat P,
    7. Rouby JJ
    . A scanographic assessment of pulmonary morphology in acute lung injury. Am J Respir Crit Care Med 1999;159(5):1612–1623.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.↵
    1. Mergoni M,
    2. Martelli A,
    3. Volpi A,
    4. Primavera S,
    5. Zuccoli P,
    6. Rossi A
    . Impact of positive end expiratory pressure on chest wall and lung pressure-volume curve in acute respiratory failure. Am J Respir Crit Care Med 1997;156(3):846–854.
    OpenUrlPubMedWeb of Science
  69. 69.↵
    1. Broseghini C,
    2. Brandolese R,
    3. Poggi R,
    4. Polese G,
    5. Manzin E,
    6. Milic-Emili J,
    7. Rossi A
    . Respiratory mechanics during the first day of mechanical ventilation in patients with pulmonary edema and chronic airway obstruction. Am Rev Respir Dis 1988;138(2):355–361.
    OpenUrlPubMedWeb of Science
  70. 70.↵
    1. Vieillard-Baron A,
    2. Prin S,
    3. Schmitt JM,
    4. Augarde R,
    5. Page B,
    6. Beauchet A,
    7. Jardin F
    . Pressure-volume curves in acute respiratory distress syndrome. Am J Respir Crit Care Med 2002;165(8):1107–1112.
    OpenUrlPubMedWeb of Science
  71. 71.↵
    1. Sohma A,
    2. Brampton WJ,
    3. Dunnill MS,
    4. Sykes MK
    . Effect of ventilation with positive end-expiratory pressure on the development of lung damage in experimental acid aspiration pneumonia in the rabbit. Intensive Care Med 1992;18(2):112–117.
    OpenUrlCrossRefPubMedWeb of Science
  72. 72.↵
    1. Dambrosio M,
    2. Roupie E,
    3. Mollet JJ,
    4. Anglade MC,
    5. Vasile N,
    6. Lemaire F,
    7. Brochard L
    . Effects of positive end-expiratory pressure and different tidal volumes on alveolar recruitment and hyperinflation. Anesthesiology 1997;87(3):495–503.
    OpenUrlCrossRefPubMedWeb of Science
  73. 73.↵
    1. Lichtwarck-Aschoff M,
    2. Mols G,
    3. Hedlund AJ,
    4. Kessler V,
    5. Markström AM,
    6. Guttmann J,
    7. et al
    . Compliance is nonlinear over tidal volume irrespective of positive end-expiratory pressure level in surfactant-depleted piglets. Am J Respir Crit Care Med 2000;162(6):2125–2133.
    OpenUrlPubMedWeb of Science
  74. 74.↵
    1. Zapol WM,
    2. Lemaire F
    1. Beydon L,
    2. Jonson B,
    3. Lemaire F
    . Lung mechanics in ARDS: compliance and the pressure-volume curves. In: Zapol WM, Lemaire F, editors. Adult respiratory distress syndrome. New York: Marcel Dekker 1991;139–161.
  75. 75.↵
    1. Hickling KG
    . Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure. Am J Respir Crit Care Med 2001;163(1):69–78.
    OpenUrlCrossRefPubMedWeb of Science
  76. 76.↵
    1. Albaiceta GM,
    2. Taboada F,
    3. Parra D,
    4. Luyando LH,
    5. Calvo J,
    6. Menendez R
    . Tomographic study of the inflection points of the pressure-volume curve in acute lung injury. Am J Respir Crit Care Med 2004;170(10):1066–1072.
    OpenUrlCrossRefPubMedWeb of Science
  77. 77.↵
    1. Albaiceta GM,
    2. Luyando LH,
    3. Parra D,
    4. Menendez R,
    5. Calvo J,
    6. Pedreira PR,
    7. Taboada F
    . Inspiratory vs. expiratory pressure-volume curves to set end-expiratory pressure in acute lung injury. Intensive Care Med 2005;31(10):1370–1378.
    OpenUrlCrossRefPubMedWeb of Science
  78. 78.↵
    1. Kallet RH,
    2. Katz JA
    . Respiratory system mechanics in acute respiratory distress syndrome. Respir Care Clin N Am 2003;9(3):297–319.
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. Bull TM,
    2. Clark B,
    3. McFann K,
    4. Moss M
    , National Institutes of Health/National Heart, Lung, and Blood Institute ARDS Network. Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am J Respir Crit Care Med 2010;182(9):1123–1128.
    OpenUrlCrossRefPubMedWeb of Science
  80. 80.↵
    1. Boissier F,
    2. Katsahian S,
    3. Razazi K,
    4. Thille AW,
    5. Roche-Campo F,
    6. Leon R,
    7. et al
    . Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Intensive Care Med 2013;39(10):1725–1733.
    OpenUrlCrossRefPubMed
  81. 81.↵
    1. Borges JB,
    2. Okamoto VN,
    3. Matos GFJ,
    4. Caramez MPR,
    5. Arantes PR,
    6. Barros F,
    7. et al
    . Reversibility of lung collapse and hopoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;174(3):268–278.
    OpenUrlCrossRefPubMedWeb of Science
  82. 82.↵
    1. Girgis K,
    2. Hamed H,
    3. Khater Y,
    4. Kacmarek RM
    . A decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care 2006;51(10):1132–1139.
    OpenUrlAbstract/FREE Full Text
  83. 83.↵
    1. Huh JW,
    2. Jung H,
    3. Choi HS,
    4. Hong SB,
    5. Lim CM,
    6. Koh Y
    . Efficacy of positive end-expiratory pressure titration after the alveolar recruitment manoeuvre in patients with acute respiratory distress syndrome. Crit Care 2009;13(1):R22.
    OpenUrlPubMed
  84. 84.↵
    1. Badet M,
    2. Bayle F,
    3. Richard JC,
    4. Guérin C
    . Comparison of optimal positive end-expiratory pressure and recruitment maneuvers during lung protective mechanical ventilation in patients with acute lung injury/acute respiratory distress syndrome. Respir Care 2009;54(7):847–854.
    OpenUrlAbstract/FREE Full Text
  85. 85.↵
    1. Fengmei G,
    2. Jin C,
    3. Songqiao L,
    4. Congshan Y,
    5. Yi Y
    . Dead space fraction changes during PEEP titration following lung recruitment in patients with ARDS. Respir Care 2012;57(10):1578–1585.
    OpenUrlAbstract/FREE Full Text
  86. 86.↵
    1. Rodriguez PO,
    2. Bonelli I,
    3. Setten M,
    4. Attie S,
    5. Madorno M,
    6. Maskin LP,
    7. Valentini R
    . Transpulmonary pressure and gas exchange during decremental PEEP titration in pulmonary ARDS patients. Respir Care 2013;58(5):754–763.
    OpenUrlAbstract/FREE Full Text
  87. 87.↵
    1. Kallet RH
    . Measuring dead-space in acute lung injury. Minerva Anestesiol 2012;78(11):1297–1305.
    OpenUrlPubMedWeb of Science
  88. 88.↵
    1. Tusman G,
    2. Suarez-Sipmann F,
    3. Böhm SH,
    4. Pech T,
    5. Reissmann H,
    6. Meschino G,
    7. et al
    . Monitoring dead space during recruitment and PEEP titration in an experimental model. Intensive Care Med 2006;32(11):1863–1871.
    OpenUrlCrossRefPubMedWeb of Science
  89. 89.↵
    1. Maisch S,
    2. Reissmann H,
    3. Fuellekrug B,
    4. Weismann D,
    5. Rutkowski T,
    6. Tusman G,
    7. Bohm SH
    . Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg 2008;106(1):175–181, table of contents.
    OpenUrlCrossRefPubMedWeb of Science
  90. 90.↵
    1. Gattinoni L,
    2. Carlesso E,
    3. Cressoni M
    . Selecting the “right” positive end-expiratory pressure level. Curr Opin Crit Care 2015;21(1):50–57.
    OpenUrlPubMed
PreviousNext
Back to top

In this issue

Respiratory Care: 61 (6)
Respiratory Care
Vol. 61, Issue 6
1 Jun 2016
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Should PEEP Titration Be Based on Chest Mechanics in Patients With ARDS?
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Should PEEP Titration Be Based on Chest Mechanics in Patients With ARDS?
Richard H Kallet
Respiratory Care Jun 2016, 61 (6) 876-890; DOI: 10.4187/respcare.04657

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Should PEEP Titration Be Based on Chest Mechanics in Patients With ARDS?
Richard H Kallet
Respiratory Care Jun 2016, 61 (6) 876-890; DOI: 10.4187/respcare.04657
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Pro Argument: PEEP Titration Should Be Based on Chest Mechanics
    • Con Argument: PEEP Titration Should Not Be Based on Chest Mechanics
    • Discussion
    • Footnotes
    • References
    • Reference
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • ARDS
  • alveolar recruitment
  • functional residual capacity
  • PEEP respiratory system compliance
  • stress index
  • transpulmonary pressure
  • ventilator-induced lung injury

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About Us
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire