Skip to main content
 

Main menu

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
American Association for Respiratory Care
  • Subscribe
  • My alerts
  • Log in
American Association for Respiratory Care

Advanced Search

  • Home
  • Content
    • Current Issue
    • Editor's Commentary
    • Coming Next Month
    • Archives
    • Top 10 Papers in 2020
  • Authors
    • Author Guidelines
    • Submit a Manuscript
  • Reviewers
    • Reviewer Information
    • Create Reviewer Account
    • Appreciation of Reviewers
  • CRCE
    • Through the Journal
    • JournalCasts
    • AARC University
    • PowerPoint Template
  • Open Forum
    • Call for Abstracts 2021
    • 2020 Abstracts
    • Previous Open Forums
  • Podcast
    • English
    • Español
    • Portugûes
    • 国语
  • Follow aarc on Twitter
  • Visit aarc on Facebook
Research ArticleSpecial Article

Ventilator Liberation in the Pediatric ICU

Christopher JL Newth, Justin C Hotz and Robinder G Khemani
Respiratory Care October 2020, 65 (10) 1601-1610; DOI: https://doi.org/10.4187/respcare.07810
Christopher JL Newth
Department of Anesthesiology and Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, California.
Keck School of Medicine, University of Southern California, Los Angeles, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Justin C Hotz
Department of Anesthesiology and Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robinder G Khemani
Department of Anesthesiology and Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, California.
Keck School of Medicine, University of Southern California, Los Angeles, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Newth CJL,
    2. Venkataraman S,
    3. Willson DF,
    4. Meert KL,
    5. Harrison R,
    6. Dean JM,
    7. et al
    . Weaning and extubation readiness in pediatric patients. Pediatr Crit Care Med 2009;10(1):1-11.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Rimensberger PC,
    2. Cheifetz IM,
    3. Kneyber M
    . The top ten unknowns in paediatric mechanical ventilation. Intensive Care Med 2018;44(3):366-370.
    OpenUrl
  3. 3.↵
    1. Wiedemann HP,
    2. Wheeler AP,
    3. Bernard GR,
    4. Thompson BT,
    5. Hayden D,
    6. deBoisblanc B,
    7. et al
    . Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006;354(24):2564-2575.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Ware LB,
    2. Matthay MA
    . Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 2001;163(6):1376-1383.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Ingelse SA,
    2. Wösten van Asperen RM,
    3. Lemson J,
    4. Daams JG,
    5. Bem RA,
    6. van Woensel JB
    . Pediatric acute respiratory distress syndrome: fluid management in the PICU. Front Pediatr 2016;4(5 Suppl 1):21.
    OpenUrl
  6. 6.
    1. Valentine SL,
    2. Sapru A,
    3. Higgerson RA,
    4. Spinella PC,
    5. Flori HR,
    6. Graham DA,
    7. et al
    . Fluid balance in critically ill children with acute lung injury. Crit Care Med 2012;40(10):2883-2889.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Flori HR,
    2. Church G,
    3. Liu KD,
    4. Gildengorin G,
    5. Matthay MA
    . Positive fluid balance is associated with higher mortality and prolonged mechanical ventilation in pediatric patients with acute lung injury. Crit Care Res Pract 2011;2011:854142.
    OpenUrlPubMed
  8. 8.↵
    1. Khemani RG,
    2. Sward K,
    3. Morris A,
    4. Dean JM,
    5. Newth CJL
    , NICHD Collaborative Pediatric Critical Care Research Network. Variability in usual care mechanical ventilation for pediatric acute lung injury: the potential benefit of a lung protective computer protocol. Intensive Care Med 2011;37(11):1840-1848.
    OpenUrlPubMed
  9. 9.↵
    1. López-Fernández Y,
    2. Azagra A-D,
    3. la Oliva de P,
    4. Modesto V,
    5. Sánchez JI,
    6. Parrilla J,
    7. et al
    . Pediatric Acute Lung Injury Epidemiology and Natural History study: incidence and outcome of the acute respiratory distress syndrome in children. Crit Care Med 2012;40(12):3238-3245.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Ingaramo OA,
    2. Ngo T,
    3. Khemani RG,
    4. Newth C
    . Impact of positive end-expiratory pressure on cardiac index measured by ultrasound cardiac output monitor. Pediatr Crit Care Med 2014;15(1):15-20.
    OpenUrlPubMed
  11. 11.
    1. Virk MK,
    2. Hotz JC,
    3. Wong W,
    4. Khemani RG,
    5. Newth CJL,
    6. Ross PA
    . Minimal change in cardiac index with increasing peep in pediatric acute respiratory distress syndrome. Front Pediatr 2019;7:9.
    OpenUrl
  12. 12.↵
    1. Pollack MM,
    2. Fields AI,
    3. Holbrook PR
    . Cardiopulmonary parameters during high PEEP in children. Crit Care Med 1980;8(7):372-376.
    OpenUrlPubMed
  13. 13.↵
    Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2015;16(5):428-439.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Khemani RG,
    2. Parvathaneni K,
    3. Yehya N,
    4. Bhalla AK,
    5. Thomas NJ,
    6. Newth C
    . Positive end-expiratory pressure lower than the ARDS Network protocol is associated with higher pediatric ARDS mortality. Am J Respir Crit Care Med 2018;198(1):77-89.
    OpenUrl
  15. 15.↵
    1. Khemani RG,
    2. Sekayan T,
    3. Hotz J,
    4. Flink RC,
    5. Rafferty GF,
    6. Iyer N,
    7. et al
    . Risk factors for pediatric extubation failure: the importance of respiratory muscle strength. Crit Care Med 2017;45(8):e798-e805.
    OpenUrl
  16. 16.↵
    1. Fumagalli J,
    2. Berra L,
    3. Zhang C,
    4. Pirrone M,
    5. Santiago R,
    6. Gomes S,
    7. et al
    . Transpulmonary pressure describes lung morphology during decremental positive end-expiratory pressure trials in obesity. Crit Care Med 2017;45(8):1374-1381.
    OpenUrl
  17. 17.↵
    1. Imber DA,
    2. Pirrone M,
    3. Zhang C,
    4. Fisher DF,
    5. Kacmarek RM,
    6. Berra L
    . Respiratory management of perioperative obese patients. Respir Care 2016;61(12):1681-1692.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Alexander E,
    2. Carnevale FA,
    3. Razack S
    . Evaluation of a sedation protocol for intubated critically ill children. Intensive Crit Care Nurs 2002;18(5):292-301.
    OpenUrlPubMed
  19. 19.↵
    1. Randolph AG,
    2. Wypij D,
    3. Venkataraman ST,
    4. Hanson JH,
    5. Gedeit RG,
    6. Meert KL,
    7. et al
    . Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA 2002;288(20):2561-2568.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Curley MAQ,
    2. Wypij D,
    3. Watson RS,
    4. Grant MJC,
    5. Asaro LA,
    6. Cheifetz IM,
    7. et al
    . Protocolized sedation vs usual care in pediatric patients mechanically ventilated for acute respiratory failure: a randomized clinical trial. JAMA 2015;313(4):379-389.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Khemani RG,
    2. Hotz J,
    3. Morzov R,
    4. Flink R,
    5. Kamerkar A,
    6. Ross PA,
    7. et al
    . Evaluating risk factors for pediatric post-extubation upper airway obstruction using a physiology-based tool. Am J Respir Crit Care Med 2016;193(2):198-209.
    OpenUrl
  22. 22.↵
    1. Baumeister BL,
    2. el-Khatib M,
    3. Smith PG,
    4. Blumer JL
    . Evaluation of predictors of weaning from mechanical ventilation in pediatric patients. Pediatr Pulmonol 1997;24(5):344-352.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Curley MA,
    2. Harris SK,
    3. Fraser KA,
    4. Johnson RA,
    5. Arnold JH
    . State Behavioral Scale: a sedation assessment instrument for infants and young children supported on mechanical ventilation. Pediatr Crit Care Med 2006;7(2):107-114.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Davis S,
    2. Worley S,
    3. Mee RBB,
    4. Harrison AM
    . Factors associated with early extubation after cardiac surgery in young children. Pediatr Crit Care Med 2004;5(1):63-68.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Harrison AM,
    2. Cox AC,
    3. Davis S,
    4. Piedmonte M,
    5. Drummond-Webb JJ,
    6. Mee R
    . Failed extubation after cardiac surgery in young children: Prevalence, pathogenesis, and risk factors. Pediatr Crit Care Med 2002;3(2):148-152.
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. Honma Y,
    2. Wilkes D,
    3. Bryan MH,
    4. Bryan AC
    . Rib cage and abdominal contributions to ventilatory response to CO2 in infants. J Appl Physiol Respir Environ Exerc Physiol 1984;56(5):1211-1216.
    OpenUrlPubMedWeb of Science
  27. 27.↵
    1. Di Mussi R,
    2. Spadaro S,
    3. Mirabella L,
    4. Volta CA,
    5. Serio G,
    6. Staffieri F,
    7. et al
    . Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care 2015;20:1.
    OpenUrl
  28. 28.
    1. Emeriaud G,
    2. Larouche A,
    3. Ducharme-Crevier L,
    4. Massicotte E,
    5. Flechelles O,
    6. Pellerin-Leblanc A-A,
    7. et al
    . Evolution of inspiratory diaphragm activity in children over the course of the PICU stay. Intensive Care Med 2014;40(11):1718-1726.
    OpenUrl
  29. 29.↵
    1. Goligher EC,
    2. Fan E,
    3. Herridge MS,
    4. Murray A,
    5. Vorona S,
    6. Brace D,
    7. et al
    . Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med 2015;192(9):1080-1088.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Umbrello M,
    2. Formenti P,
    3. Longhi D,
    4. Galimberti A,
    5. Piva I,
    6. Pezzi A,
    7. et al
    . Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care 2015;19(1):161.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Leung K,
    2. Newth CJL,
    3. Hotz JC,
    4. O’Brien KC,
    5. Fink JB,
    6. Coates AL
    . Delivery of epinephrine in the vapor phase for the treatment of croup. Pediatr Crit Care Med 2016;17(4):e177-e181.
    OpenUrl
  32. 32.↵
    1. Tibballs J,
    2. Shann FA,
    3. Landau LI
    . Placebo-controlled trial of prednisolone in children intubated for croup. Lancet 1992;340(8822):745-748.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.↵
    1. Anene O,
    2. Meert KL,
    3. Uy H,
    4. Simpson P,
    5. Sarnaik AP
    . Dexamethasone for the prevention of postextubation airway obstruction: a prospective, randomized, double-blind, placebo-controlled trial. Crit Care Med 1996;24(10):1666-1669.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Baranwal AK,
    2. Meena JP,
    3. Singhi SC,
    4. Muralidharan J
    . Dexamethasone pretreatment for 24 h versus 6 h for prevention of postextubation airway obstruction in children: a randomized double-blind trial. Intensive Care Med 2014;40(9):1285-1294.
    OpenUrl
  35. 35.↵
    1. Tellez DW,
    2. Galvis AG,
    3. Storgion SA,
    4. Amer HN,
    5. Hoseyni M,
    6. Deakers TW
    . Dexamethasone in the prevention of postextubation stridor in children. J Pediatr 1991;118(2):289-294.
    OpenUrlCrossRefPubMedWeb of Science
  36. 36.↵
    1. Kuriyama A,
    2. Umakoshi N,
    3. Sun R
    . Prophylactic corticosteroids for prevention of postextubation stridor and reintubation in adults: a systematic review and meta-analysis. Chest 2017;151(5):1002-1010.
    OpenUrl
  37. 37.↵
    1. Khemani RG,
    2. Randolph A,
    3. Markovitz B
    . Corticosteroids for the prevention and treatment of post-extubation stridor in neonates, children and adults. Cochrane Database Syst Rev 2009;24(3):CD001000.
    OpenUrl
  38. 38.↵
    1. Hammer J,
    2. Numa A,
    3. Newth C
    . Acute respiratory distress syndrome caused by respiratory syncytial virus. Pediatr Pulmonol 1997;23(3):176-183.
    OpenUrlCrossRefPubMedWeb of Science
  39. 39.↵
    1. Yang KL,
    2. Tobin MJ
    . A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med 1991;324(21):1445-1450.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.↵
    1. Tobin MJ,
    2. Jubran A
    . Variable performance of weaning-predictor tests: role of Bayes’ theorem and spectrum and test-referral bias. Intensive Care Med 2006;32(12):2002-2012.
    OpenUrlCrossRefPubMedWeb of Science
  41. 41.↵
    1. Connors AF
    . A fresh look at the weaning process. Intensive Care Med 2006;32(12):1928-1929.
    OpenUrlPubMed
  42. 42.↵
    1. Thiagarajan RR,
    2. Bratton SL,
    3. Martin LD,
    4. Brogan TV,
    5. Taylor D
    . Predictors of successful extubation in children. Am J Respir Crit Care Med 1999;160(5 Pt 1):1562-1566.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Jubran A,
    2. Grant BJB,
    3. Laghi F,
    4. Parthasarathy S,
    5. Tobin MJ
    . Weaning prediction: esophageal pressure monitoring complements readiness testing. Am J Respir Crit Care Med 2005;171(11):1252-1259.
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.↵
    1. Argent AC,
    2. Newth CJL,
    3. Klein M
    . The mechanics of breathing in children with acute severe croup. Intensive Care Med 2008;34(2):324-332.
    OpenUrlPubMed
  45. 45.↵
    1. Willis BC,
    2. Graham AS,
    3. Yoon E,
    4. Wetzel RC,
    5. Newth C
    . Pressure-rate products and phase angles in children on minimal support ventilation and after extubation. Intensive Care Med 2005;31(12):1700-1705.
    OpenUrlPubMed
  46. 46.↵
    1. Khemani RG,
    2. Hotz J,
    3. Morzov R,
    4. Flink RC,
    5. Kamerkar A,
    6. LaFortune M,
    7. et al
    . Pediatric extubation readiness tests should not use pressure support. Intensive Care Med 2016;42(8):1214-1222.
    OpenUrl
  47. 47.↵
    1. Venkataraman ST,
    2. Khan N,
    3. Brown A
    . Validation of predictors of extubation success and failure in mechanically ventilated infants and children. Crit Care Med 2000;28(8):2991-2996.
    OpenUrlPubMedWeb of Science
  48. 48.↵
    1. Manczur TI,
    2. Greenough A,
    3. Pryor D,
    4. Rafferty GF
    . Comparison of predictors of extubation from mechanical ventilation in children. Pediatr Crit Care Med 2000;1(1):28-32.
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. Farias JA,
    2. Alia I,
    3. Retta A,
    4. Olazarri F,
    5. Fernández A,
    6. Esteban A,
    7. et al
    . An evaluation of extubation failure predictors in mechanically ventilated infants and children. Intensive Care Med 2002;28(6):752-757.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Hubble CL,
    2. Gentile MA,
    3. Tripp DS,
    4. Craig DM,
    5. Meliones JN,
    6. Cheifetz IM
    . Deadspace to tidal volume ratio predicts successful extubation in infants and children. Crit Care Med 2000;28(6):2034-2040.
    OpenUrlCrossRefPubMedWeb of Science
  51. 51.↵
    1. Riou Y,
    2. Chaari W,
    3. Leteurtre S,
    4. Leclerc F
    . Predictive value of the physiological deadspace/tidal volume ratio in the weaning process of mechanical ventilation in children. J Pediatr (Rio J) 2012;88(3):217-221.
    OpenUrlPubMed
  52. 52.↵
    1. Bousso A,
    2. Ejzenberg B,
    3. Ventura AMC,
    4. Fernandes JC,
    5. de Oliveira Fernandes IC,
    6. Góes PF,
    7. Costa Vaz FA
    . Evaluation of the dead space to tidal volume ratio as a predictor of extubation failure. J Pediatr (Rio J) 2006;82(5):347-353.
    OpenUrlPubMed
  53. 53.↵
    1. Khemani RG
    . Dead space to tidal volume ratio (VD/VT) to explain extubation failure in children: the limitations of current evidence. J Pediatr (Rio J) 2012;88(3):191-194.
    OpenUrlPubMed
  54. 54.↵
    1. Foronda FK,
    2. Troster EJ,
    3. Farias JA,
    4. Barbas CS,
    5. Ferraro AA,
    6. Faria LS,
    7. et al
    . The impact of daily evaluation and spontaneous breathing test on the duration of pediatric mechanical ventilation: a randomized controlled trial. Crit Care Med 2011;39(11):2526-2533.
    OpenUrlPubMed
  55. 55.↵
    1. Brochard L,
    2. Rauss A,
    3. Benito S,
    4. Conti G,
    5. Mancebo J,
    6. Rekik N,
    7. et al
    . Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 1994;150(4):896-903.
    OpenUrlCrossRefPubMedWeb of Science
  56. 56.↵
    1. Brower RG,
    2. Matthay MA,
    3. Morris A,
    4. Schoenfeld D,
    5. Thompson BT,
    6. Wheeler A
    . Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Eng J Med 2000;342(18):1301-1308.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.↵
    1. Goligher EC,
    2. Dres M,
    3. Fan E,
    4. Rubenfeld GD,
    5. Scales DC,
    6. Herridge MS,
    7. et al
    . Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med 2018;197(2):204-213.
    OpenUrl
  58. 58.↵
    1. Khemani RG,
    2. Hotz JC,
    3. Klein MJ,
    4. Kwok J,
    5. Park C,
    6. Lane C,
    7. et al
    . A phase II randomized controlled trial for lung and diaphragm protective ventilation (real-time effort driven ventilator management). Contemp Clin Trials 2020;88:105893.
    OpenUrl
  59. 59.↵
    1. Venkataraman ST
    . Weaning and extubation in infants and children: religion, art, or science. Pediatr Crit Care Med 2002;3(2):203-205.
    OpenUrlPubMed
  60. 60.↵
    1. Morris AH,
    2. Wallace CJ,
    3. Menlove RL,
    4. Clemmer TP,
    5. Orme JF,
    6. Weaver LK,
    7. et al
    . Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med 1994;149(2 Pt 1):295-305.
    OpenUrlCrossRefPubMedWeb of Science
  61. 61.
    1. McKinley BA,
    2. Moore FA,
    3. Sailors RM,
    4. Cocanour CS,
    5. Marquez A,
    6. Wright RK,
    7. et al
    . Computerized decision support for mechanical ventilation of trauma induced ARDS: results of a randomized clinical trial. J Trauma 2001;50(3):415-424.
    OpenUrlCrossRefPubMedWeb of Science
  62. 62.↵
    1. Fessler HE,
    2. Brower RG
    . Protocols for lung protective ventilation. Crit Care Med 2005;33(3 Suppl):S223-S227.
    OpenUrlCrossRefPubMed
  63. 63.↵
    1. Curley M,
    2. Hibberd PL,
    3. Fineman LD,
    4. Wypij D,
    5. Shih MC,
    6. Thompson J,
    7. et al
    . Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA 2005;294(2):229-237.
    OpenUrlCrossRefPubMedWeb of Science
  64. 64.
    1. Willson DF,
    2. Thomas NJ,
    3. Markovitz BP,
    4. Bauman LA,
    5. DiCarlo JV,
    6. Pon S,
    7. et al
    . Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA 2005;293(4):470-476.
    OpenUrlCrossRefPubMedWeb of Science
  65. 65.
    1. Jouvet P,
    2. Farges C,
    3. Hatzakis G,
    4. Monir A,
    5. Lesage F,
    6. Dupic L,
    7. et al
    . Weaning children from mechanical ventilation with a computer-driven system (closed-loop protocol): A pilot study. Pediatr Crit Care Med 2007;8(5):425-432.
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. Restrepo RD,
    2. Fortenberry JD,
    3. Spainhour C,
    4. Stockwell J,
    5. Goodfellow LT
    . Protocol-driven ventilator management in children: comparison to nonprotocol care. J Intensive Care Med 2004;19(5):274-284.
    OpenUrlCrossRefPubMed
  67. 67.
    1. Newth CJL,
    2. Khemani RG,
    3. Jouvet PA,
    4. Sward KA
    . Mechanical ventilation and decision support in pediatric intensive care. Pediatr Clin North Am 2017;64(5):1057-1070.
    OpenUrl
  68. 68.↵
    1. Graham AS,
    2. Kirby AL
    . Ventilator management protocols in pediatrics. Respir Care Clin N Am 2006;12(3):389-402. Sep
    OpenUrlPubMed
  69. 69.↵
    1. Schoenfeld DA,
    2. Bernard GR
    , ARDS Network. Statistical evaluation of ventilator-free days as an efficacy measure in clinical trials of treatments for acute respiratory distress syndrome. Crit Care Med 2002;30(8):1772-1777.
    OpenUrlCrossRefPubMedWeb of Science
  70. 70.↵
    1. Willson DF,
    2. Thomas NJ,
    3. Tamburro R,
    4. Truemper E,
    5. Truwit J,
    6. Conaway M,
    7. et al
    . Pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med 2013;14(7):657-665.
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. Kurachek SC,
    2. Newth CJ,
    3. Quasney MW,
    4. Rice T,
    5. Sachdeva RC,
    6. Patel NR,
    7. et al
    . Extubation failure in pediatric intensive care: a multiple-center study of risk factors and outcomes. Crit Care Med 2003;31(11):2657-2664.
    OpenUrlCrossRefPubMed
  72. 72.↵
    1. Schultz TR,
    2. Lin RJ,
    3. Watzman HM,
    4. Durning SM,
    5. Hales R,
    6. Woodson A,
    7. et al
    . Weaning children from mechanical ventilation: a prospective randomized trial of protocol-directed versus physician-directed weaning. Respir Care 2001;46(8):772-782.
    OpenUrlPubMed
  73. 73.↵
    1. Ashtekar CS,
    2. Wardhaugh A
    . Do cuffed endotracheal tubes increase the risk of airway mucosal injury and post-extubation stridor in children? Arch Dis Child 2005;90(11):1198-1199.
    OpenUrlFREE Full Text
  74. 74.
    1. Deakers TW,
    2. Reynolds G,
    3. Stretton M,
    4. Newth C
    . Cuffed endotracheal tubes in pediatric intensive care. J Pediatr 1994;125(1):57-62.
    OpenUrlCrossRefPubMedWeb of Science
  75. 75.↵
    1. Newth CJL,
    2. Rachman B,
    3. Patel N,
    4. Hammer J
    . The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr 2004;144(3):333-337.
    OpenUrlCrossRefPubMedWeb of Science
  76. 76.↵
    1. Pettignano R,
    2. Holloway SE,
    3. Hyman D,
    4. LaBuz M
    . Is the leak test reproducible? South Med J 2000;93(7):683-685.
    OpenUrlPubMed
  77. 77.
    1. Foland JA,
    2. Super DM,
    3. Dahdah NS,
    4. Mhanna MJ
    . The use of the air leak test and corticosteroids in intubated children: a survey of pediatric critical care fellowship directors. Respir Care 2002;47(6):662-666.
    OpenUrlPubMed
  78. 78.↵
    1. De Bast Y,
    2. De Backer D,
    3. Moraine JJ,
    4. Lemaire M,
    5. Vandenborght U,
    6. Vincent JL
    . The cuff leak test to predict failure of tracheal extubation for laryngeal edema. Intensive Care Med 2002;28(9):1267-1272.
    OpenUrlCrossRefPubMedWeb of Science
  79. 79.↵
    1. Wratney AT,
    2. Cheifetz IM
    . Extubation criteria in infants and children. Respir Care Clin N Am 2006;12(3):469-481.
    OpenUrlPubMed
  80. 80.↵
    1. Chung Y-H,
    2. Chao T-Y,
    3. Chiu C-T,
    4. Lin M-C
    . The cuff-leak test is a simple tool to verify severe laryngeal edema in patients undergoing long-term mechanical ventilation. Crit Care Med 2006;34(2):409-414.
    OpenUrlCrossRefPubMedWeb of Science
  81. 81.↵
    1. Jarreau PH,
    2. Louis B,
    3. Dassieu G,
    4. Desfrere L,
    5. Blanchard PW,
    6. Moriette G,
    7. et al
    . Estimation of inspiratory pressure drop in neonatal and pediatric endotracheal tubes. J Appl Physiol 1999;87(1):36-46.
    OpenUrlPubMedWeb of Science
  82. 82.↵
    1. Hammer J,
    2. Newth C
    . Influence of endotracheal tube diameter on forced deflation flow-volume curves in rhesus monkeys. Eur Respir J 1997;10(8):1870-1873.
    OpenUrlAbstract
  83. 83.↵
    1. Khemani RG,
    2. Newth C
    . CPAP alone best estimates post-extubation effort during spontaneous breathing trials in children. Intensive Care Med 2017;43(1):150-151.
    OpenUrl
  84. 84.↵
    1. Khemani RG,
    2. Flink R,
    3. Hotz J,
    4. Ross PA,
    5. Ghuman A,
    6. Newth C
    . Respiratory inductance plethysmography calibration for pediatric upper airway obstruction: an animal model. Pediatr Res 2015;77(1):75-83.
    OpenUrl
  85. 85.↵
    1. Hammer J,
    2. Eber E
    1. Newth CJL,
    2. Hammer J
    . Measurements of thoraco-abdominal asynchrony and work of breathing in children. In: Hammer J, Eber E, editors. Progress in respiratory research, Vol. 33, Karger, Basel: Paediatric Pulmonary Function Testing; 2005:148-156.
  86. 86.↵
    1. Mastropietro CW,
    2. Mack EH
    , editors. Current concepts in pediatric critical care, 2018 edition. Mount Prospect, IL: Society of Critical Care Medicine; 2018.
PreviousNext
Back to top

In this issue

Respiratory Care: 65 (10)
Respiratory Care
Vol. 65, Issue 10
1 Oct 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Association for Respiratory Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ventilator Liberation in the Pediatric ICU
(Your Name) has sent you a message from American Association for Respiratory Care
(Your Name) thought you would like to see the American Association for Respiratory Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Ventilator Liberation in the Pediatric ICU
Christopher JL Newth, Justin C Hotz, Robinder G Khemani
Respiratory Care Oct 2020, 65 (10) 1601-1610; DOI: 10.4187/respcare.07810

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Ventilator Liberation in the Pediatric ICU
Christopher JL Newth, Justin C Hotz, Robinder G Khemani
Respiratory Care Oct 2020, 65 (10) 1601-1610; DOI: 10.4187/respcare.07810
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Background
    • Predictive Indexes for Weaning
    • Techniques of Weaning
    • Criteria for Readiness for Extubation
    • Impact of ETTs on Weaning and Spontaneous Breathing Trials
    • Additional Technology for Assessment of Post-Extubation Upper Airway Obstruction
    • Summary
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

Cited By...

Keywords

  • weaning
  • extubation
  • mechanical ventilation
  • respiratory support
  • spontaneous breathing
  • stridor
  • pressure rate product
  • esophageal pressure measurements
  • respiratory inductance plethysmography
  • phase angles
  • maximum negative airway pressure

Info For

  • Subscribers
  • Institutions
  • Advertisers

About Us

  • About Us
  • Editorial Board
  • Reprints/Permissions

AARC

  • Membership
  • Meetings
  • Clinical Practice Guidelines

More

  • Contact Us
  • RSS
American Association for Respiratory Care

Print ISSN: 0020-1324        Online ISSN: 1943-3654

© Daedalus Enterprises, Inc.

Powered by HighWire